STM32与FPGA之间的FSMC通信

上传人:工**** 文档编号:413098202 上传时间:2023-03-07 格式:DOC 页数:8 大小:314KB
返回 下载 相关 举报
STM32与FPGA之间的FSMC通信_第1页
第1页 / 共8页
STM32与FPGA之间的FSMC通信_第2页
第2页 / 共8页
STM32与FPGA之间的FSMC通信_第3页
第3页 / 共8页
STM32与FPGA之间的FSMC通信_第4页
第4页 / 共8页
STM32与FPGA之间的FSMC通信_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《STM32与FPGA之间的FSMC通信》由会员分享,可在线阅读,更多相关《STM32与FPGA之间的FSMC通信(8页珍藏版)》请在金锄头文库上搜索。

1、 . . . 1. 引言STM32是ST(意法半导体)公司推出的基于ARM核CortexM3的32位微控制器系列。CortexM3核是为低功耗和价格敏感的应用而专门设计的,具有突出的能效比和处理速度。通过采用Thumb2高密度指令集,CortexM3核降低了系统存储要求,同时快速的中断处理能够满足控制领域的高实时性要求,使基于该核设计的STM32系列微控制器能够以更优越的性价比,面向更广泛的应用领域。STM32系列微控制器为用户提供了丰富的选择,可适用于工业控制、智能家电、建筑安防、医疗设备以与消费类电子产品等多方位嵌入式系统设计。STM32系列采用一种新型的存储器扩展技术FSMC,在外部存储

2、器扩展方面具有独特的优势,可根据系统的应用需要,方便地进行不同类型大容量静态存储器的扩展。2. FSMC机制2.1 FSMC技术优势支持多种静态存储器类型。STM32通过FSMC町以与SRAM、ROM、PSRAM、NOR Flash和NANDFlash存储器的引脚直接相连。支持丰富的存储操作方法。FSMC不仅支持多种数据宽度的异步读写操作,而且支持对NORPSRAMNAND存储器的同步突发访问方式。支持同时扩展多种存储器。FSMC的映射地址空间中,不同的BANK是独立的,可用于扩展不同类型的存储器。当系统中扩展和使用多个外部存储器时,FSMC会通过总线悬空延迟时间参数的设置,防止各存储器对总线

3、的访问冲突。支持更为广泛的存储器型号。通过对FSMC的时间参数设置,扩大了系统中可用存储器的速度围,为用户提供了灵活的存储芯片选择空间。支持代码从FSMC扩展的外部存储器中直接运行,而不需要首先调入部SRAM。2.2FSMC部结构STM32微控制器之所以能够支持NOR Flash和NAND Flash这两类访问方式完全不同的存储器扩展,是因为FSMC部实际包括NOR Flash和NANDPC Card两个控制器,分别支持两种截然不同的存储器访问方式。在STM32部,FSMC的一端通过部高速总线AHB连接到核CortexM3,另一端则是面向扩展存储器的外部总线。核对外部存储器的访问信号发送到AH

4、B总线后,经过FSMC转换为符合外部存储器通信规约的信号,送到外部存储器的相应引脚,实现核与外部存储器之间的数据交互。FSMC起到桥梁作用,既能够进行信号类型的转换,又能够进行信号宽度和时序的调整,屏蔽掉不同存储类型的差异,使之对核而言没有区别。2.3FSMC映射地址空间FSMC管理1 GB的映射地址空间。该空间划分为4个大小为256 MB的BANK,每个BANK又划分为4个64 MB的子BANK,如表1所列。FSMC的2个控制器管理的映射地址空间不同。NOR Flash控制器管理第1个BANK,NANDPC Card控制器管理第24个BANK。由于两个控制器管理的存储器类型不同,扩展时应根据

5、选用的存储设备类型确定其映射位置。其中,BANK1的4个子BANK拥有独立的片选线和控制寄存器,可分别扩展一个独立的存储设备,而BANK2BANK4只有一组控制寄存器。3. FSMC扩展外部SRAM配置在STM32 与 FPGA 进行通信的时候,FPGA其实可以看做STM32外部的SRAM,因此相应的配置可以参考对外部SRAM的配置。SRAMROM、NOR Flash和PSRAM类型的外部存储器都是由FSMC的NOR Flash控制器管理的,扩展方法基本相同,其中NOR Flash最为复杂。通过FSMC扩展外部存储器时,除了传统存储器扩展所需要的硬件电路外,还需要进行FSMC初始化配置。FSM

6、C提供大量、细致的可编程参数,以便能够灵活地进行各种不同类型、不同速度的存储器扩展。外部存储器能否正常工作的关键在于:用户能否根据选用的存储器型号,对配置寄存器进行合理的初始化配置3.1地址映射空间 3.2读写时序控制3.3配置存储器基本特征通过对FSMC特殊功能寄存器FSMC_BCRi(i为子BANK号,i=1,4)中对应控制位的设置,FSMC根据不同存储器特征可灵活地进行工作方式和信号的调整。根据选用的存储器芯片确定需要配置的存储器特征,主要包括以下方面:存储器类型(MTYPE)是SRAMROM、PSRAM,还是NOR FlaSh;存储芯片的地址和数据引脚是否复用(MUXEN),FSMC可

7、以直接与AD0AD15复用的存储器相连,不需要增加外部器件;存储芯片的数据线宽度(MWID),FSMC支持8位16位两种外部数据总线宽度;对于NOR Flash(PSRAM),是否采用同步突发访问方式(B URSTEN);对于NOR Flash(PSRAM),NWAIT信号的特性说明(WAITEN、WAITCFG、WAITPOL);对于该存储芯片的读写操作,是否采用相同的时序参数来确定时序关系(EXTMOD)。3.4配置存储器时序参数FSMC通过使用可编程的存储器时序参数寄存器,拓宽了可选用的外部存储器的速度围。FSMC的SRAM控制器支持同步和异步突发两种访问方式。选用同步突发访问方式时,F

8、SMC将HCLK(系统时钟)分频后,发送给外部存储器作为同步时钟信号FSMC_CLK。此时需要的设置的时间参数有2个:HCLK与FSMC_CLK的分频系数(CLKDIV),可以为216分频;同步突发访问中获得第1个数据所需要的等待延迟(DATLAT)。对于异步突发访问方式,FSMC主要设置3个时间参数:地址建立时间(ADDSET)、数据建立时间(DATAST)和地址保持时间(ADDHLD)。FSMC综合了SRAMROM、PSRAM和NOR Flash产品的信号特点,定义了4种不同的异步时序模型。选用不同的时序模型时,需要设置不同的时序参数,如表2所列。在实际扩展时,根据选用存储器的特征确定时序

9、模型,从而确定各时间参数与存储器读写周期参数指标之间的计算关系;利用该计算关系和存储芯片数据手册中给定的参数指标,可计算出FSMC所需要的各时间参数,从而对时间参数寄存器进行合理的配置。4. STM32扩展外部SRAM实例4.1 难点解析4.1.1 数据传输自动化第一个角度理解 STM32 有FSMC(其实其他芯片基本都有类似的总线功能),FSMC 的好处就是你一旦设置好之后,WR(写)、RD(读)、DB0-DB15 这些控制线和数据线,都是FSMC 自动控制的。打个比方,当你在程序中写到:*(volatile unsigned short int *)(0x60000000)=val;那么F

10、SMC 就会自动执行一个写的操作,其对应的主控芯片的WE、RD 这些脚,就会呈现出写的时序出来(即WE=0,RD=1),数据val 的值也会通过DB0-15 自动呈现出来(即FSMC-D0:FSMC-D15=val )。地址0x60000000 会被呈现在数据线上(即A0-A25=0,地址线的对应最麻烦,要根据具体情况来。4.1.2 硬件连接硬件平台:(STM32F103VC + EP3C5E144C8N) 将图中的IS61WV512BLL 改为FPGA 对应的接口即,可按照模式A-SRAM/PSRAM进行连接那么在硬件上面,我们需要做的,仅仅是MCU 和LCD 控制芯片的连接关系:WE-WR

11、,均为低电平有效RD-RD,均为低电平有效FSMC-D0-15 接LCD DB0-15FSMC_NE1-CS 接PD7连接好之后,读写时序都会被FSMC 自动完成。但是还有一个很关键的问题,就是RS 没有接因为在FSMC 里面,根本就没有对应RS。怎么办呢?这个时候,有一个好方法,就是用某一根地址线来接RS。比如我们选择了A16 这根地址线来接,那么当我们要写寄存器(备注:此处应为数据)的时候,我们需要RS,也就是A16(RS 为高)置高。软件中怎么做呢?也就是将FSMC 要写的地址改成0x60010000,如下:*(volatile unsigned short int *)(0x60010

12、000)=val;这个时候,A16 在执行其他FSMC 的同时会被拉高,因为A0-A18 要呈现出地0x60010000。0x60010000 里面的Bit17=1,就会导致A16 为1。当要读数据(备注:此处为寄存器)时,地址由0x60010000 改为了0x60000000,这个时候A16 就为0了。RS 问题:RS 为0 表示;读写寄存器;RS 为1,读写数据RAM;4.2应用STM32固件对FSMC进行初始化配置ST公司为用户开发提供了完整、高效的工具和固件库,其中使用C语言编写的固件库提供了覆盖所有标准外设的函数,使用户无需使用汇编操作外设特性,从而提高了程序的可读性和易维护性。ST

13、M32固件库中提供的FSMC的SRAM控制器操作固件,主要包括1个数据结构和3个函数FSMC_NORSRAMInitStructure (调用库函数) RCC_Configuration(); (时钟选择) NVIC_Configuration(); (中断优先级) FSMC_GPIO_Configuration(); (连接IO口初始化) FSMC_SRAM_Init(); (FMSC配置) USART_Initial(); (UART1端口配置 )4.2 其他人调试遇到问题点(摘录)项目中需要使用STM32和FPGA通信,使用的是地址线和数据线,在FPGA中根据STM32的读写模式A的时序

14、完成写入和读取。之前的PCB设计中只使用了8跟数据线和8根地址线,调试过程中没有发现什么问题,在现在的PCB中使用了8根地址线和16根数据线,数据宽度也改成了16位,刚开始是读取数据不正确,后来发现了问题,STM32在16位数据宽度下有个外地址映射的问题,只需要把FPGA中的设定的地址乘以2在STM32中访问就可以了,但是在写操作的时候会出现写当前地址的时候把后面的地址写成0的情况,比如说我给FPGA中定义的偏移地址0x01写一个16位数据,按照地址映射,在STM32中我把地址写入0x02,。实际测试发现这个地址上的数据是对的,但是FPGA中0x02地址上的数据也变成了00。块1存储区被划分为

15、4个NOR/PSRAM区,这四个区在部地址上是连续排列的。但是实际上每个区共用的是同一组地址线与数据线,因此需要有外的一个地址映射,因此在STM32中实际上有两个地址,一个是在部访问的地址,另外一个是实际地址线输出的地址。HADDR27:0对应的是需要转换到外部存储器的部AHB地址线,其HADDR27:26位用于选择四个存储块之一。HADDR25:0包含外部存储器地址。HADDR是字节地址,而不同的外部存储器数据长度也不一样,因此在数据宽度为8位和16位时映射关系也不一样。在数据宽度为8位时HADDR25:0与FSMC_A25:0对应相连,这时候在STM32中访问的地址和实际地址线产生的地址是一致的。而在16位数据宽度时HADDR25:1与FSMC_A24:0对应相连,HAD

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号