飞机导航系统

上传人:M****1 文档编号:411521037 上传时间:2022-12-11 格式:DOCX 页数:12 大小:22.20KB
返回 下载 相关 举报
飞机导航系统_第1页
第1页 / 共12页
飞机导航系统_第2页
第2页 / 共12页
飞机导航系统_第3页
第3页 / 共12页
飞机导航系统_第4页
第4页 / 共12页
飞机导航系统_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《飞机导航系统》由会员分享,可在线阅读,更多相关《飞机导航系统(12页珍藏版)》请在金锄头文库上搜索。

1、飞机导航系统aircraft navigation system 确定飞机的位置并引导飞机按预定航线飞行 的整套设备(包 括飞机上的和地面上的设备)。发展概况 早期的飞机主要靠目视导航。 20 世纪 20 年代开始 发展仪 表导航。飞机上有了简单的仪表,靠人工计算得出飞机当 时的位置。 30 年 代出现无线电导航,首先使用的是中波四航道无 线电信标和无线电罗盘。 40 年代初开始研制超短波的伏尔导航系 统和仪表着陆系统(见无线电控制着 陆)。 50 年代初惯性导航系 统用于飞机导航。 50 年代末出现多普勒导航 系统。 60 年代开始 使用远程无线电罗兰 C 导航系统,作用距离达到 2000

2、公里。为 满足军事上的需要还研制出塔康导航系统,后又出现伏尔塔克导 航 系统及超远程的奥米加导航系统, 作用距离已达到 10000 公里。 1963 年 出现卫星导航 ,70 年代以后发展全球定位导航系统。导航方法 导航的关键在于确定飞机的瞬时位置。 确定飞机位 置有目视 定位、航位推算和几何定位三种方法。目视定位是由驾驶员观察地面标志来判定飞机位置;航位推 算是根据已 知的前一时刻的位置和测得的导航参数来推算当前飞 机的位置;几何定位是 以某些位置完全确定的导航点为基准,测 量出飞机相对于这些导航点的几何 关系,最后定出飞机的绝对位飞机导航系统按工作原理可以分为:仪表导航系统。利用 飞机上的

3、仪表所提供的数据计算出飞机的各种导航参数。无线电导航系 统。利用地面无线电导航台或空间的导航卫星和飞机上 的无线电导航设备对 飞机进彳丁定位和引导。惯性导航系统。利用安装在惯性平台上的3个加速 度计的测量结果连续地给出飞 机的空间位置和速度。如果把加速度计直接装 在飞机机体上,并 与航向系统和姿态系统结合起来进行导航便构成捷联式惯 性导航系统。天文导航系统。以天体为基准,利用星体跟踪器测得星体高 度角来确定飞机的位置。组合导航系统。将以上几种导航系统组合构成的 性能更为完善的导航系统。早期的领航概念中是没有定位一说的, 飞行员或者领航员只是通过观 察公路、铁路、河流、山峰、城镇或湖泊等地标来确

4、定飞机的方位。单纯的NDB或VOR也只是飞机定向的一种手段。直到80年代DME加盟无线电导航后,才使定向向定位前进了一步。现在以 GPS 为代 表的卫星导航系统是被广泛应用的精确定位的一种主要导航方式。导航种类主要分惯性导航和无线电导航两种。惯性导航是指安装在飞机上的惯性基准系统(IRS)。它主要由3个加速计和 3 个陀螺仪构成。加速计用于测量飞机的 3 个平移运动加速 度,指示当地地垂线的方向; 陀螺仪用于测量飞机的 3 个转动运动的 角位移,指示地球自转轴的方向。 计算机对测出的加速度进行两次积 分,计算出飞机的位置。以 A320 飞机为例,它有 3 部惯性基准系统, 就提供了 3 个惯性

5、基准系统 的位置给飞行管理计算机( FMC ),飞行 管理计算机则根据这 3 个位置再 计算出一加权平均值,我们称之为“混 合惯导” (MIX IRS )位置。无线电导航是指通过测定无线电波从发射台到接收台的传播时间或 相位和相角来进行定向定位的。 地面雷达定位也是无线电导航的一种 方式。现在一般将无线电导航分为陆基导航和星基导航两种。陆基导航依靠的是台站与台站之间的相对位置,由一个台站到另一个台站。 譬如由 NDB 到 NDB 或由 VOR 到 VOR 或 NDB 与 VOR 之间。星基导 航依赖的是一系列航路点的精确位置,它的主要特征是任一点的坐标化。它 所使用的导航设施有: DME-DM

6、E 、VOR-DME 、GPS、 GLONASS 等。 举个简单例子:回上海由东山(KN)到嵊县(JF)到庵东(AND) 段, 我们现在的飞行计划中所使用的只是这几个点的地理位置坐标,而不是它们 的频率,所以我们认为这是星基导航的方式。但如果 GPS 不可用或飞行管 理计算机部分存在问题,我们就需要使用这些航路导航设施的具体频率,向 台或者背台飞行,从而达到进场的目的,这时候我们所使用的就是陆基导 航的方式,也就是传统的无线电导航模式。由此可见,不是说使用陆地上 的导航设备就是陆基导航,也不是说星基导航是仅仅使用 GNSS (全球卫 星导航系统) 。在区域导航的现阶段,还是脱离不了这些航路导航

7、设施的, 或许在未来的新航行系统中会完全抛弃现有的航路导航设施,实行点与点之间 的直接对话。我们通常所说的无线电位置,是指机载接收机向飞行管理计算机传送接收 到的 信号,通过测距定位( DME-DME )或测距测 向定 位 ( DME- VOR ),来确定的位置。其工作原理是:飞机起飞后,与飞行管理计算机有 关的机载无线电导航系统开始工作,对两个地理位置最好的 DME 台(两个 台与飞机连线之间的夹角大于 30 度小于 150 度)进行自动调谐,计算出距 离后与导航数据库里的各台经纬度以及从其它渠道得到的飞行高度等其它信 息相结合,计算出飞机的无线电位置。当 DME 接收机无法接收到两个符合

8、条件的地面 DME 台信号 时,机载无线电导航系统就会选择同一位置的DME/VOR 。在盲降进近期间,用 LOC (航向信标)更新使用 LOC 波束的 横向位置 ( DME/DME-LOC 或 VOR/DME-LOC )。 全球卫星导航系统( GNSS )是星基导航系统的核心。它主要包括美国国防 部掌握的 GPS 和前苏联从 80 年代开始建设现在由俄罗斯空间局管理的 GLONASS ,以及由西欧欧洲空间局正在建设的 NAVSAT 系统。 GPS 是 目前应用最广泛的卫星导航系统,但在航空应用方面却受到了技术和政策的 干扰,在纯民用的 NAVSAT 系统投入使用前,用户还没有自主选择的空 间,

9、所以使用的还是 INS/GPS 这种组合,这也是现在我们最主要和最常用 的导航方式。所以我们平常所说的 GPS 位置,对飞机而言,其实就是 GPIRS ,即 INS/GPS 的混合位置。每一部惯性基准系统都有一个和 GPS 的混合位置,飞行管理计 算机根据其品质等级数及优选性选择其中的一个。综上所述可知,单纯的 NDB 和 VOR 是不能定位的,那么惯导位置、无线 电位置和 GPIRS 位置哪个才是代表飞机的位置呢? FMC (本文不涉及 FMC 对飞机其它系统提供其它类型数据的作用,单独考虑其在坐标和位置方 面的计算)考虑每个定位设备的精确性和完整性而选择最精确的位置,从这 个意义上来说,飞

10、机的位置,就是 FM 的位置。假如 GPS 数据有效并且 测试合格,那么 GPS/INERTIAL 为基本的导 航方式。否则的话,使用无线 电导航台加惯导或仅用惯导。即 FMGS (飞行管理引导系统,以 A320 为 例,它包括 2 个飞行管理引导计算机 FMGC、2 个多功能控制显示组件MCDU、1个飞行控制组件FCU和2个飞行增稳计算机FAC)使用GPS或当GPS不工作时使用无线电导航台更新FM位置。优先顺序为:IRS- GPS、IRS-DME/DME、IRS-VOR/DME、仅用 IRS。飞行初始化时,每部 FMGC (飞行管理 引导计算机,我们通常讲的 FMC 是指它的管理部分而没 有

11、提及其引 导部分)显示一 FM 位置,这个位置是一个 GPIRS ;起飞时, FM 位 置更新为储存在数据库里的跑道入口位置;飞行中, FM 位置向无线 电位置或 GPS 位置接近,其接近率取决于飞机高度。 FMGC 一直在 计算 从混合惯导位置到无线电位置或 GPS 位置的矢量偏差。如果无 线电位置或 GPS 位置可用, 每部 FMGC 不断更新这个偏差。 所以飞 机的位置不是单 纯的惯导位置或无线电位置或 GPS 位置,这和飞机 的导航方式以及飞机所 处的不同阶段是相关的。当然,所有的位置都是针对WGS-84坐标系而言 的,在内地使用北京 54 坐标系时,由于 GPS 使用的也是 WGS-

12、84 坐标 系,可能还会有所偏差,在这里就不 额外表述了。导航靠无线电导航和自主式导航。 无线电导航包括: VOR/DME 导航(需要 VOR/DME 地面信标台)、 GPS 导航、 ADF 自动定向机(就 是楼 上说的NDB导航台) 仪表着陆系统ILS。自主式主要是惯性基准系统。 地面监视雷达那是地面空管用的,不是飞机的导航系统。地面监视雷 达包括 一次雷达和二次雷达,和飞机上的 ATC 应答机组成 ATCRBS 或 DABS。 二次雷达是以询问-应答方式工作的,能给空中交通管制员提供飞机 识别码和 高度信息。但并不提供速度信息!而飞机上的TCAS 防撞系统只计算对方垂直速度,并不显示对方速

13、度。一个飞机场都有人么部分组成飞机场通讯导航设施 飞机场所需的各项通讯、导航设施的统称。 航空通讯有陆空通讯和平面通讯。 陆空通讯飞机场空中交通管制部门和飞机之间的无线电通讯。主要 方式是用 无线电话;远距离则用无线电报。 飞机场无线电通讯设施在城市划定的发讯区修建无线电发讯台, 收讯区修 建无线电收讯台。无线电中心收发室则建在飞机场航管楼 内。发讯台和收讯台、收发室,以及和城市之间都要按照发射机发射 功率的 大小和数量,保持一定的距离。功率愈大,距离要愈远。收、 发讯台的天线 场地以及邻近地区应为平坦地形, 易于排除地面水,收 讯台址还应特别注意远离各种可能对无线电电波产生二次辐射的物 体(

14、如高 压架空线和高大建筑物等)和干扰源(如发电厂、有电焊和 高频设备的工 厂、矿山等)。20 世纪 80 年代,载波通讯和微波通讯 发达的区域,平面通 讯一般不再利用短波无线电通讯设备。 无线电发 讯台主要安装对飞机通讯用的发射设备;也不再单建无线电收讯台, 而将无 线电收讯台和无线电中心收发室合建在飞机场的航管楼内。 飞机场有线通讯设施。有电话通讯和调度通讯。 航空导航分航路导航和着陆导航。航路导航中长波导航台(NDB)。是设在航路上,用以标出所指定航路 的无线电近程导航设备。台址应选在平坦、宽阔和不被水淹的地 方,并且要远离二次辐射体和干扰源。一般在航路上每隔200 250公里左右设置一座

15、;在山区或某些特殊地区,不宜用 NDB 导航。 全向信标 /测距仪台 ( VOR/DME ) 全向信标和测距仪通常合建在一 起。 全向信标给飞机提供方位信息;测距仪则给飞机示出飞机距测距 仪台的直线 距离。它对天线场地的要求比较高。在一般情况下,要求 以天线中心为中 心,半径 300 米范围内,场地地形平坦又不被水淹。 该台要求对二次辐射体保持一定的距离。 台址比中、长波导航台的要 求严。在地形特殊的情况下,可选用多普勒全向信标 /测距仪台(DVOR/DME),以提高设备的场地适应性。该台的有效作用距离取决于发射机 的发射功率和飞机的飞行高度。在飞行高度5700 米以上的高空航路上,两台相隔距

16、离大于 200 公里。 塔康(TACAN)和伏尔塔康(VORTAC)塔康是战术导航设备的缩写,它将测量方位和距离合成为一套装置。塔康和全向信标合建,称 伏尔塔康。其方 位和距离信息,也可供民用飞机的机载全向信标接收 机和测距接收设备接 收;军用飞机则用塔康接收设备接收。塔康和伏 尔塔康台的设置以及台址的 选择,和全向信标/测距仪台的要求相同。 罗兰系统(LORAN)远距导航系统。20世纪80年代航空上使用的主要是 罗兰-C。罗兰-C系统由一个主台和两个至四个副台组成罗兰台链。罗兰-C 系统的有效作用距离,在陆上为 2000 公里,在 海面上为 3600 公里。主台 和副台间的距离可达到 1400 公里。按所 定管辖地区的要求,设置主台和副 台;并按一般的长波导航台选址要 求进行选址。 奥米加导航系统(OMEGA)。和罗兰-C一样,是一种远程双曲线相位差 定位系统。由于选

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 建筑资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号