SA模数转换器概述过采样sa ADC的基本结构包括抗混迭滤波器、调制器及降采样低通滤波器, 如图3.1所示抗混迭滤波器将输入信号限制在一定的带宽之内,对于过采样ADC, 由于输入信号带宽f0远小于采样频率fs的一半,抗混迭滤波的通带到阻带之间 的过渡带(fs -2fo)较宽,缓解了其设计要求,可用低阶模拟滤波器实现调制 器将过采样信号转化为高速、低精度的数字信号然后降采样滤波器将其转变为 Nyquist频率的高精度信号调制器可以抑制过采样率ADC电路引入的噪声,非线 性等误差,这样缓解了它对模拟电路的精度要求另外,对于开关电容电路实现 的过采样ADC,无需采用采样保持电路模拟部分|数字部分图3.1 SA过采样ADC的结构图本章首先介绍了 SAADC的一些主要性能指标、调制器的工作原理、基本结构, 然后介绍了调制器的非理想因素与误差来源,最后介绍了未深入研究的问题与宽 带SA ADC研究现状3.1 SA ADC的一些主要性能指标SA ADC的主要性能指标为:动态范围(DR)、信噪比(SNR)、信噪失真比(SNDR)、 有效位数(ENOB)以及过载度(0L)如图3.2所示,图中横轴为输入信号的归一化 值,即VJVref,纵轴为SNR或SNDR,二者均用dB表示。
从图3.2中可以看出,当 输入信号幅度较小时,SNR和SNDR大小是相等的;随着输入幅度的增加,失真将 会降低调制器的性能,因而在输入幅度较大时,SNDR会比SNR小一些图3.2显示了非理想调制器的性能比理想调制器的性能差一些:一方面是由于实际调制器的 有限增益引起性能成呈线性下降;另一方面是由于实际调制器过载而造成的性能 下降J Linear effects(Premature Overload—AI SNR ■SNDRDROL 0 I:-Til.'.* Pawer[dB]图3.2典型的转换器的性能图调制器各相主要性能指标[60]介绍如下:1. 信噪比(SNR):是指在一定的输入幅度时,转换器输出信号能量与噪声能 量的比值转换器能获得的最大信噪比为峰值信噪比(PSNR)2. 信噪失真比(SNDR):是指在一定的输入幅度时,转换器输出信号能量与 噪声、失真之和的比值转换器能获得的最大信噪失真比为峰值信噪失真比 (PSNDR)3. 动态范围(DR):输入动态范围(DRi)是指转换器最大输入信号和能检测 到的最小输入信号能量的比值,这里最大信号能量定义为PSNR下降6dB时的输入 值,而最小信号即为背景噪声能量值。
输出动态范围(DRo)定义为最大输出信号 能量和最小输出信号能量的比值,等于PSNRENOB =PSNDR -1.7660^4. 有效位数(ENOB):是根据实际测量的PSNDR来计算的,如下式所示:(3.1)5. 过载度(0L):是指使调制器过载时的最小归一化输入值,其对应的SNR 比PSNR小6dB与Nyquist速率ADC不同,过采样速率沁 ADC不关心积分非线性(INL)和 差分非线性(DNL)两项指标这是因为这两项指标都是衡量采样点和采样点之间 的精度,而过采样率SAADC的输出都与其前一个状态有关,因而INL和DNL在这种 情况下是没有意义的3.2 SAADC提高信噪比的方法SA转换器主要是通过过采样和噪声整形来提高信噪比的,从而获得高精度此外,采用多位量化器也是目前提高宽带SA转换器信噪比的一种基本方法3.2.1过采样SA转换器采用远远高于Nyquist频率的时钟对输入信号进行采样,使得量化 噪声的功率分布在更宽的频带内,这样就减少了信号频带内的噪声这也是过采 样ADC的基本原理图3.3给出了在过采样率fs和Nyquist采样率?f下信号和量化噪声功率频 谱图由图可见,过采样率下的信号带宽内的量化噪声功率要比Nquist采样率下 的小得多。
在对输入信号进行量化时,会引入量化误差假设量化噪声e随机均匀分布, 且与输入信号无关,即为白噪声,其功率[61]为:e2 =1JA/2 e2de = A(3.2)q A -ai2 12式(3.2)中A为量化间距噪声功率密度为:hesA(3.3)其中fs为采样频率,可见量化噪声总功率与采样频率无关,但噪声功率谱密度却 与采样频率有关,提高采样频率可以降低单位频带内的功率谱密度我们定义过 采样率OSR为:OSR =厶2 fb(3.4)这样,在过采样率下,输出的信号频带内的总量化噪声功率为:. A 2N = f fb h 2 df =q -fb e」12OSR(3.5)从式(3.5)可以看出,提高过采样率可以降低信号带宽内的噪声功率采样 率每提高一倍,信号带宽内的噪声功率降低3dB,在输入信号功率不变的情况下, 相当于增加了 0.5位的分辨率当OSR = 256时,动态范围增加24dB,即相当于 提高4位分辨率但这种指数式增长的过采样率很快就达到电路实现的极限,因 此在实际电路中,通常OSR不会超过5123.2.2 噪声整形噪声整形可以进一步提高转换器的信噪比利用高通滤波器的特性,将低频 部分的量化噪声移到高频,减少了信号带宽内的噪声。
高通滤波器的阶数和采样 频率越高,信号带宽内的噪声就越小实现噪声整形的一常见方法就是采用SA调制器如图3.4(a)所示,它包括 一个滤波器H(/)、一个B位ADC和一个B位DAC其线性模型如图3.4(b)所示,图中假设D/A是理想的调制器的传输函数为:Y(Z)=冷 X (Z) + 吋 Eq(Z)(3.6)其中X(z)、Eq(z)分别为信号和量化噪声的Z域变换定义信号传输STF(z)和噪声传输函数NTF(z)分别为(3.7)-(3.8):STF (z)=(3.7)(3.8)显然,如果选择H(z)在信号带宽fb内有很大增益,而在信号带宽外增益 很小,则STF(z)趋近于1, NTF(z)趋近于0这样输入信号就被直接输出,几乎不受影响,而量化噪声却被整形压缩图3.4 SA调制器及其线性模型L阶噪声整形调制器的信号和噪声传输函数为:STF (z)二 z -lNTF (f) =(L - z-i >\NTF(f ) = 22L sin2L(n f /f)(3.9) 则信号带宽内的量化噪声能量为:A 2 兀 2 L 1N 二一 q 12 (2L +1) OSR(2 l+1)(3.10)一般的,过采样率每提高一倍,信号带宽内的噪声功率降低3(2L + 1)dB,在输入信号功率不变的情况下,相当于提高了 L + 0.5位的分辨率。
图3.5给出了一阶、二阶、三阶2A调制器的噪声传输函数(公式3.9)的幅频 响应曲线与一阶YA调制器相比,二阶SA调制器的NTF将低频带内的量化噪声进一步压缩,而对高频带内的量化噪声进一步放大,即量化噪声进一步“推”向更高频段,阶数越高,效果越明显图3.5 一阶、二阶、三阶SA调制器的噪声传输函数的幅频响应3.2.3 多位量化器采用多位量化器可以有效的提高信噪比[62~66]随着转换信号带宽的不断提高,通过过采样和噪声整形技术不能完全满足设计目标的要求将调制器中的量化器位数提高,也即减小了A,这样量化噪声的功率谱密度下降了实际上, 量化器位数每增加一位,调制器的有效位数也增加一位此外,量化器位数提高 可以提高高阶调制器的稳定性理想的L阶、B位SA调制器的动态范围如(3.11)式所示[60]:DR =竺(2 B -1)2(2 L +1) ^2(3.11)如果对多位量化器的非线性不作特殊的技术处理,量化器的非线性将直接影响调制器的性能[67]后续章节将会分析不同降低量化器非线性的技术3.3 调制器结构SA调制器大致可以分为单环结构和级联结构两种单环结构采用一个A/D 转换器、一个D/A转换器和一系列串连的积分器组成。
一阶、二阶都属于单环结 构级联结构(MASH)是由一系列的低阶单环调制器级联而成此外,单环和级联 结构都可以采用一位或多位ADC和DAC,通过降低量化噪声,达到提高信噪比的目 的不同结构有不同的优缺点,如表3.1所示表3.1工A调制器结构的比较单环结构级联结构稳定性有条件稳定稳定过采样率(OSR)适用于高的0SR适用于低的OSR动态范围(DR)与理想DR相差较远与理想DR接近对电路的失配及电荷泄漏的敏感性低高电路组成全模拟模拟和数字3.3.1 单环结构最简单、无条件稳定的YA调制器便是一阶噪声整形实现的单环调制器如图3.6所示,它由一个积分器、一个一位的ADC和一个1位的DAC组成输入信号 X[n]与输出信号经DAC转换后的信号相减,经积分器积分后进入量化器积分器 的传输函数为ZT/(1-ZT)则调制器的输出可以表示为:Y (z) = X (z) z-1 + E (z )(1-z-1)(3.12)Integrator e[n] 1-bit ~DAC -图3.6 一阶丫人调制器的原理图 噪声传输函数为:NTF (z)二 1 - z-1\NTF(f ) = |1-z-1| = 2sin(" f /f )z=ej2厝 / fs s(3.12) 信号带宽内的噪声功率为:N =里兰 -q 12 3 OSR 3(3.14)p —(2b -1 r a2 /8假设满量程正弦输入信号的能量为p— 1 ,得到一阶工A调制器的最大信噪比为:PSNR — 10log10— 10log10I(2 B-)卜 10log10OSR 3丿(3.15)由式(3.15)可知,采用一阶噪声整形可以降低带宽内的噪声功率:过采样率每提高一倍,信噪比提高9dB,相当于提高了 1.5位的分辨率。
SA调制器是一个反馈系统,从时域角度讲,反馈不断使输出Y[n]逼近输入X [n] 对式(3.12)做差分变换可得输入输出差分方程:Y[n] = X [n -1] + E [n] - E [n -1](3.16)可见,调制器的当前输出等于延迟了一个时钟的输入加上量化误差的一阶差 分图3.7(a)为一阶SA调制器输入X[n]和输出Y [n]的瞬态仿真结果不考虑实 际电路中的非理想因素,采样频率Fs = 48Mhz,过采样率OSR = 12,输入信号频 率Fin =199.21875Khz很显然,在正弦信号值较大时,输出1的几率就大,反之, -1出现的几率就大a)FteijiieriQr[H2;](b)E 总口目^倉 口1 事:■ £5 ¥ &图3.7 一阶丫人调制器的仿真(a)输入为正弦时调制器的输出;(b)输出信号的频谱图3.7(b)为对输出码流Y[n]的4096点FFT分析结果图中,能量最大的频点 位置代表了输入信号频率Fin = 199.21875Khz,整个噪声呈30dB/dec衰减,这与 一阶噪声整形的衰减相符;另外,在信号的倍频点出现很多谐波(tones),这说 明量化器的输出和输入信号相关性很高,量化噪声不再是白噪声。
大量谐波的出 现是一阶SA调制器的缺点[61,68]高阶SA调制器可以减小输出频谱中的谐波, 这是因为高阶YA调制器可以使量化器输入和输入信号的相关性大大降低由于一阶ZA调制器会出现谐波的特性,这种结构很少用于单环调制器然 而在下章节讲的级联调制器中,第二、第三级经常采用一阶。