高中物理竞赛辅导4.1.4 气体分子运动论

上传人:新** 文档编号:410284286 上传时间:2023-09-14 格式:DOC 页数:22 大小:402KB
返回 下载 相关 举报
高中物理竞赛辅导4.1.4 气体分子运动论_第1页
第1页 / 共22页
高中物理竞赛辅导4.1.4 气体分子运动论_第2页
第2页 / 共22页
高中物理竞赛辅导4.1.4 气体分子运动论_第3页
第3页 / 共22页
高中物理竞赛辅导4.1.4 气体分子运动论_第4页
第4页 / 共22页
高中物理竞赛辅导4.1.4 气体分子运动论_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《高中物理竞赛辅导4.1.4 气体分子运动论》由会员分享,可在线阅读,更多相关《高中物理竞赛辅导4.1.4 气体分子运动论(22页珍藏版)》请在金锄头文库上搜索。

1、 1.4 气体分子运动论1. 4.1、 分子运动论的基本点1、宏观物体由大量分子组成。分子直径的数量级一般为,分子质量为。在标准状态下,气体分子的数密度为2、物体内的分子永不停息地作无规则运动。这是根据布朗运动和扩散现象得出的结论。实验表明扩散的快慢和布朗运动的激烈程度与温度的高低有明显的关系。由此常把大量子的无规则运动称为热运动,热运动是物质运动的一种基本形式,热现象是它的宏观表现。气体分子热运动的平均速率与温度的关系为 常温下, 。3、分子之间存在的相互作用力。分子之间同时存在引力和斥力,它们都随距离的增大而减小。其合力具体表现为相吸引还是相排斥,取决于分子间的距离。当时,合力为零,分子间

2、的距离的位置称为平衡位置;当r时,分子力表现引力;当r时,分子力表现为斥力;当r时,分子力可忽略不计。分子力是保守力,存在着由分子和分子间相对位置所决定的势能称为分子力势能。分子力和热运动是决定物体宏观性质的基本因素。分子力作用倾向于使分子聚集一起,在空间形成某种有序排列;热运动却力图造成混乱存在向外扩散的趋势。142、理想气体的微观模型先来作个估算:在标准状态下,1mol气体体积,分子数,若分子直径,则分子间的平均间距,相邻分子间的平均间距与分子直径相比。由此可知,气体分子间的距离比较大,在处理某些问题时,可以把气体分子视为没有大小的质点;同时可以认为气体分子除了相互碰撞或者跟器壁碰撞之外,

3、分子力也忽略不计,分子在空间自由移动,也没有分子势能。因此理想气体是指分子间没有相互作用和分子可以看作质点的气体。这一微观模型与气体愈稀薄愈接近于理想气体的宏观概念是一致的。143、理想气体的压强宏观上测量的气体施给容器壁的压强,是大量气体分子对器壁不断碰撞的结果。在通常情况下,气体每秒碰撞的器壁的分子数可达。在数值上,气体的压强等于单位时间内大量分子施给单位面积器壁的平均冲量。其表达式为 式中n是分子数密度,是分子的平均平动动能,n和增大,意味着单位时间内碰撞单位面积器壁的分子数增多,分子碰撞器壁一次给予器壁的平均冲量增大,因而气体的压强增加。144、温度的微观意义将式代入式后,可以得到气体

4、分子的平均平动动能为 图1-4-1这被称为气体温度公式,温度升高,分子热运动的平均平动动能增大,分子热运动加剧。因此,气体的温度是气体分子平均平动能的标志,是分子热运动剧烈程度的量度。例1、质量为的圆筒水平地放置在真空中。质量、厚度可忽略的活塞将圆筒分为体积相同的两部分(图1-4-1),圆筒的封闭部分充有n摩尔的单原子理想气体,气体的摩尔质量为M,温度为,突然放开活塞,气体逸出。试问圆筒的最后速度是多少?设摩擦力、圆筒和活塞的热交换以及气体重心的运动均忽略不计。(,氦的摩尔质量为,)解:过程的第一阶段是绝热膨胀,膨胀到两倍体积后(图1-4-2)温度将是T。根据绝热方程,有m1m2图1-4-2因

5、此: 圆筒和活塞的总动能等于气体内能的损失,即根据动量守恒定律,解上述方程,得过程第一阶段结束时的圆筒速度:。由此得出结论,在过程第一阶段的最后瞬间,圆筒以速度向右运动,此时活塞正好从圆筒冲出。我们把坐标系设置在圆筒上。所给的是一个在真空中开口的圆筒,筒内贮有质量为、温度为T的气体。显然,气体将向左上方流动,并推动圆筒向右以速度运动。气体分子的动能由下式给出:式中是分子的平均速度注:指均方根速率,它由下述关系给定:平衡状态下各有1/6的分子在坐标轴方向来回运动。在计算气体逸出时,假定有1/6的分子向圆筒的底部运动。这自然只是一级近似。因此,的质量以速度向圆筒底部运动,并与筒底弹性碰撞,之后圆筒

6、以速度、气体以速度运动。对于弹性碰撞,动量守恒定律和机械守恒定律成立。由动量守恒有由机械能守恒有 解以上方程组,得到气体逸出后的圆筒速度为气体分子的1/6以速度反弹回来,的绝对值要小于。气体必然有较低的温度,其一部分内能使圆筒的动能增加。速度相加后得圆筒速度为。代入所给的数据:;.得圆筒的最后速度为1.4、光在球面上的反射与折射1.4.1、球面镜成像(1)球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面图1-4-1图1-4-2的半径。一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F(图1-4-1),这F点称为凹镜的焦点。一束近主轴的平行光线经凸面镜反射后将发散,反向延长可会聚于主轴上一

7、点F(图1-4-2),这F点称为凸镜的虚焦点。焦点F到镜面顶点O之间的距离叫做球面镜的焦距f。可以证明,球面镜焦距f等于球面半径R的一半,即(2)球面镜成像公式 根据反射定律可以推导出球面镜的成像公式。下面以凹镜为例来推导:(如图1-4-3所示)设在凹镜的主轴上有一个物体S,由S发出的射向凹镜的光线镜面A点反射后与主轴交于点,半径CA为反射的法线,即S的像。根据反射定律,则CA为角A的平分线,根据角平分线的性质有 由为SA为近轴光线,所以,式可改写为 式中OS叫物距u,叫像距v,设凹镜焦距为f,则 代入式 化简 这个公式同样适用于凸镜。使用球面镜的成像公式时要注意:凹镜焦距f取正,凸镜焦距f取

8、负;实物u取正,虚物u取负;实像v为正,虚像v为负。上式是球面镜成像公式。它适用于凹面镜成像和凸面镜成像,各量符号遵循“实取正,虚取负”的原则。凸面镜的焦点是虚的,因此焦距为负值。在成像中,像长 和物长h之比为成像放大率,用m表示,由成像公式和放大率关系式可以讨论球面镜成像情况,对于凹镜,如表所列;对于凸镜,如表所列。表 凹镜成像情况物的性质物的位置像的位置像的大小像的正倒像的虚实实物同侧f缩小倒实2f同侧f2f缩小倒实2f同侧2f等大倒实2ff同侧f2f放大倒实f放大f0异侧0放大正虚虚物异侧0f缩小正实表 凸镜成像情况物的性质物的位置像的位置像的大小像的正倒像的性质实物f同侧0f缩小正虚虚

9、物2f同侧f2f缩小倒虚2f同侧2f等大倒虚f2f同侧2f放大倒虚ff0异侧0放大正实(3)球面镜多次成像 球面镜多次成像原则:只要多次运用球面镜成像公式即可,但有时前一个球面镜反射的光线尚未成像便又遇上了后一个球面镜,此时就要引进虚像的概念。图1-4-4如图1-4-4所示,半径为R的凸镜和凹镜主轴相互重合放置,两镜顶点O1 、 O2 相距2.6R,现于主轴上距凹镜顶点O1为0.6R处放一点光源S。设点光源的像只能直接射到凹镜上,问S经凹镜和凸镜各反射一次后所成的像在何处?S在凹镜中成像, 可解得 ,根据题意:所以凹镜反射的光线尚未成像便已又被凸镜反射,此时可将凹镜原来要成像作为凸镜的虚物来处

10、理, , 可解得 说明凸镜所成的像和S在同一位置上。1.4.2、球面折射成像(1)球面折射成像公式 (a)单介质球面折射成像图1-4-5如图1-4-5所示,如果球面左、右方的折射率分别为1和n,为S的像。因为i、r均很小,行以 因为 ,代入式可有 对近轴光线来说,、同样很小,所以有 ,代入式可得 当时的v是焦距f,所以 (b)双介质球面折射成像如图1-4-6所示,球形折射面两侧的介质折射率分别n1和n2,C是球心,O是顶点,球面曲率半径为R,S是物点,是像点,对于近轴光线 , ,联立上式解得 图1-4-6这是球面折射的成像公式,式中u、的符号同样遵循“实正虚负”的法则,对于R;则当球心C在出射

11、光的一个侧,(凸面朝向入射光)时为正,当球心C在入射光的一侧(凹面朝向入射光)时为负。若引入焦点和焦距概念,则当入射光为平行于主轴的平行光(u=)时,出射光(或其反向延长线)的交点即为第二焦点,(也称像方焦点),此时像距即是第二焦距,有。当出射光为平行光时,入射光(或其延长线)的交点即第一焦点(即物方焦点),这时物距即为第一焦距,有,将、代入成像公式改写成 反射定律可以看成折射定律在时的物倒,因此,球面镜的反射成像公式可以从球面镜折射成像公式中得到,由于反射光的行进方向逆转,像距和球面半径R的正负规定应与折射时相反,在上述公式中令,即可得到球面镜反射成像公式,对于凹面镜,对于凸面镜,厚透镜成像

12、。(C)厚透镜折射成像图1-4-7t设构成厚透镜材料的折射率为n,物方介质的折射率为,像方介质的折射率为,前后两边球面的曲率半径依次为和,透镜的厚度为,当物点在主轴上的P点时,物距,现在来计算像点的像距。,首先考虑第一个球面AOB对入射光的折射,这时假定第二个球面AOB不存在,并认为球AOB右边,都为折射率等于n的介质充满,在这种情况下,P点的像将成在处,其像距,然后再考虑光线在第二个球面的折射,对于这个球面来说,便是虚物。因此对于球面AOB,物像公式为 对于球面AOB,物像公式为这样就可以用二个球面的成像法来求得透镜成像的像距u。(2)光焦度 60cm30cm图1-4-8折射成像右端仅与介质

13、的折射率及球面的曲率半径有关,因而对于一定的介质及一定形状的表面来说是一个不变量,我们定义此量为光焦度,用表示: 它表征单折射球面对入射平行光束的屈折本领。的数值越大,平行光束折得越厉害;0时,屈折是会聚性的;0时,屈折是发散性的。=0时,对应于,即为平面折射。这时,沿轴平行光束经折射后仍是沿轴平行光束,不出现屈折现象。光焦度的单位是米-1,或称屈光度,将其数值乘以100,就是通常所说的眼镜片的“度数”。(3)镀银透镜与面镜的等效 图1-4-9有一薄平凸透镜,凸面曲率半径R=30cm,已知在近轴光线时:若将此透镜的平面镀银,其作用等于一个焦距是30cm的凹面镜;若将此透镜的凸面镀银,其作用也等

14、同于一个凹面镜,其其等效焦距。当透镜的平面镀银时,其作用等同于焦距是30cm的凹面镜,即这时透镜等效面曲率半径为60cm的球面反射镜。由凹面镜的成像性质,当物点置于等效曲率中心 时任一近轴光线经凸面折射,再经平面反射后将沿原路返回,再经凸面折射后,光线过 点,物像重合。如图1-4-8所示。,。依题意,故。凸面镀银,光路如图1-4-9所示。关键寻找等效曲率中心,通过凸面上任一点A作一垂直于球面指向曲率中心C的光线。此光线经平面折射后交至光轴于,令则,得。图1-4-10由光的可逆性原理知,是等效凹面镜的曲率中心,f=10cm。例1、如图1-4-10所示,一个双凸薄透镜的两个球面的曲率半径均为r,透镜的折射率

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号