核辐射物理与探测学复习资料

上传人:工**** 文档编号:409800553 上传时间:2022-09-05 格式:DOCX 页数:18 大小:41.26KB
返回 下载 相关 举报
核辐射物理与探测学复习资料_第1页
第1页 / 共18页
核辐射物理与探测学复习资料_第2页
第2页 / 共18页
核辐射物理与探测学复习资料_第3页
第3页 / 共18页
核辐射物理与探测学复习资料_第4页
第4页 / 共18页
核辐射物理与探测学复习资料_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《核辐射物理与探测学复习资料》由会员分享,可在线阅读,更多相关《核辐射物理与探测学复习资料(18页珍藏版)》请在金锄头文库上搜索。

1、核辐射物理与探测学复习一、关于载流子1)无论是气体探测器,还是闪烁、半导体探测器,其探测射线的本质都是将射线沉积在探 测器灵敏体积内的能量转换为载流子。这三种探测器具有不同的载流子,分别是:气体 (),闪烁体(),半导体();答:A气体:电子一离子对; 闪烁体:第一个打拿极收集到的光电子;半导体:电子一空穴对;2)在这个转换过程中,每产生一个载流子都要消耗一定的能量,称之为(),对于三种探 测器来说,这个能量是不同的,分别大概是多少?气体(),闪烁体(),半导体()。 这个能量是大些好,还是小些好?为什么?答: 平均电离能;30eV, 300eV, 3eV; 这个能量越小越好,因为平均电离能越

2、小,产生的载流子就越多,而载流子的数目 服从法诺分布,载流子越多则其数目的相对涨落越小,这会导致更好的能量分辨率;3)在这个转换过程中,射线沉积在探测器中的能量是一个()变量,而载流子的数目是一 个()变量,载流子的数目是不确定的,它服从()分布,该分布的因子越是大些好, 还是小些好?为什么?答:连续型变量;离散型变量;法诺分布;法诺因子越小越好,小的法诺因子意味着小的 统计涨落,导致好的能量分辨率;二、关于探测效率1)对于不带电的粒子(如Y、中子),在探测器将射线沉积在其灵敏体积中的能量转换为 载流子之前,还需要经历一个过程,如果没有该过程,则探测器无法感知射线。以Y射 线为例,这个过程都包

3、含哪些反应()?这个过程的产物是什么()?对于 1 个 1MeV 的入射Y射线,请随便给出一个可能的该产物能量()?答: 对于Y射线,这些反应包括光电效应、康普顿散射以及电子对效应(如果Y射线的 能量 1.022MeV);这些反应的产物都是次级电子; 对于1个1MeV的丫射线,次级电子的能量可以是几十keV几百keV,也可以是接 近1MeV;2)这个过程发生将主要地决定探测器的探测效率,那么影响探测效率(本征)的因素都有 哪些()?在选择探测器的时候,为了得到高的探测效率(本征),应该做什么考虑()?答: 影响本征探测效率的因素有:探测器的原子序数、密度、体积、形状,以及Y射线 的能量,甚至还

4、包括射线射入探测器的位置、角度; 在选择探测器时,为了得到高的本征探测效率,应该选择那些原子序数高、密度大 的探测器,探测器的体积要大并且探测器的形状合理(例如正圆柱形);3) 绝对探测效率和本征探测效率的区别是什么?答: 绝对探测效率考虑的是对每一个源发射出的粒子,探测器测量到的计数值; 本征探测效率考虑的是对每一个射入探测器的粒子,探测器测量到的计数值。 绝对探测效率是整个探测系统中所有环节的综合表现;而本征探测效率则主要反映 了探测器的特性;三、关于能量分辨率1) 能量分辨率是探测器的一项重要指标,但能量分辨率并不是一个特定的量,当我们说某 个探测器的能量分辨率是多少的时候,需要指定条件

5、,这个(些)条件是()。答: 需要指定这是对哪个能量说的。比如,当我们说某个Nal(TI)探测器的能量是7%的 时候,指的是对662keV的丫射线能量,如果是对于1.33MeV的Y射线,就不再是 7%了,而是要小一些;2) 能量分辨率是个绝对的概念还是相对的概念()?答:是个相对的概念,能量分辨率的分子是全能峰的半宽度,分母是全能峰能量的期望 值;3) 对于某个确定的探测器,能量分辨率与灵敏体积内沉积能量的关系是什么()?答: 如果仅仅考虑载流子的统计性问题,则能量分辨率与灵敏体积内沉积能量的关系是 反比于E的1/2次方;4) 虽然我们希望能量分辨率越小越好,但实际上它总是受统计涨落限制的,不

6、可能无限小。 请从载流子的角度描述,这个限制是什么?答: 一个确定的射线能量经过带电粒子在探测器内的电离过程,变成了数目不等的载流 子,载流子的的数目服从法诺分布;当载流子数目的期望值N较大时,它将表现为 一个期望值为N,sigma为sqrt(FN)的高斯分布,由此决定的能量分辨率为2.355 Xsqrt(F/N); 这个分辨率是无法再被改善的,是分辨率的极限,实际中还要考虑其它因素对能量 分辨率的影响,因此能量分辨率还要更差。四、射线与物质相互作用1) 带电粒子在射入某个物质时,可以与物质发生四种类型的作用,分别是()?虽然从微 观上看,带电粒子与物质发生的每次相互作用的效果是()的,但是从

7、宏观上看,我们 可以认为带电粒子在进入介质中之后,一定和介质发生了相互作用。答:带电粒子使原子核外电子电离或激发;带电粒子受到原子核库仑力时发生的轫致辐 射;带电粒子与原子核发生的弹性碰撞;带电粒子与原子核外电子发生的弹性碰撞 (实际相当与整个原子); 带电粒子与物质发生的每次相互作用都是随机的(例如,碰撞参数不同,导致其传 递给电子的能量就是不同的);2)重带电粒子与介质发生相互作用的主要类型是();假设你是一个a (5MeV)粒子, 当你进入某一个介质并被其阻止时,你是否会知道该介质的原子序数是多少,为什么? 随着进入该介质的深度不断增加,你的能量将会不断(),对于某个确定的深度,你的 能

8、量也是确定的吗,为什么?你是否可以准确预测你将在哪里停下来,为什么?你在介 质中损失能量的同时,也在介质中造成了影响(“乒乒乓乓,有的电子被电离,有的电 子被激发”),那么随着你的不断深入,你在路上观察到的自由电子是越来越密集, 还是越来越稀疏,为什么(不考虑你快要停下来时候的情形)?你的行进道路是曲折的, 还是直来直去的,为什么?曾经有一些电子,距离你的路径是那样的近,当你从它们身 边掠过的时候,它们被你强劲地拉动了,形成了()?它们在停止之前又做了些什么?答:重带电粒子与介质发生相互作用的主要类型是电离(激发); 如果我是一个a粒子,我无法判断介质的原子序数,因为尽管电离能量损失率是与 原

9、子序数Z成正比的,但是同时也是与原子密度N成正比的;仅仅通过电离能量损 失一项无法判断Z的大小; 随着进入介质深度的增加,能量将会不断下降; 在某个确定的深度,a粒子的能量不是确定的。原因是a粒子的能量损失过程是一 个随机过程,其能量会随着射程的延伸而表现出能量歧离;不过a粒子能量的期望 值是确定的;不能确定地预测a粒子将在哪里停下来,同样是因为能量损失过程的随机性导致的 射程歧离;随着射程的延伸,a粒子的能量逐渐降低,在单位路径上交给电子的能量越来越多, 因此看到的自由电子越来越密集(未考虑最终阶段)。 a粒子的径迹基本是直线,因为a粒子质量远远超过电子的质量,a粒子的方向很 难被改变; 那

10、些碰撞参数很小的电子形成了 delta电子,这些电子的能量足够高,还能接着去 电离;3)快电子与物质发生相互作用的主要类型包括()和(),二者都可以使快电子的能量损 失,其比例关系是()。如果你是个快电子,射入了某一个介质,你有无可能告诉我们 该介质的原子序数是高还是低,为什么?为什么你看起来像个醉汉,东歪西扭地走路? 是什么原因,使你突然发生了接近180度的偏转?对于a粒子,知道了起始位置和入射 方向,其终点位置就差不多确定了,那么对于快电子呢?答: 快电子与物质相互作用的主要类型为电离(激发)和轫致辐射;二者的比例关系为 EZ/700 (轫致辐射能量损失率vs电离(激发)能量损失率); 如

11、果是个快电子,进入介质之后,有可能根据两种能量的损失关系来判断原子序数 的高低;与入射电子发生碰撞的可能是电子,二者质量相同,因此入射电子的方向可能发生 很大的变化;与入射电子发生碰撞的也可能是原子核,高原子序数的原子核提供的 强大库仑力可能会使入射电子发生大角度的反散射;因此电子的径迹是曲曲折折 的;高原子序数原子核对电子的吸引使得电子180度的反散射成为可能; 对于a粒子来说,入射方向和入射位置确定,基本终点就可以确定了,但是对电子 是不可能的;4)假如一个a粒子和一个电子同时从坐标(0,0,0)(单位:cm)的位置出发,并也碰巧 都停在了某个介质中的(10, 0, 0)位置处。问它们各自

12、走了多少路程,a粒子答曰:“10.01cm左右吧! ”电子答曰:“屈指算来,与a粒子相仿也是10cm左右”。它们的回 答是否正确,为什么?答: 对于a粒子来说,是正确的,因为其射程与路程长度相当; 对于电子来说,不对,它的路程长度远远超过射程;5)在一个半径为1cm的Nal晶体球的球心处,有一个能量为3MeV的电子想要“跑出去”, 很不幸,它没有成功,为什么?如果有10000个这样的电子被“抓住”了,那么能否说 Nal晶体球内沉积的能量增加了 30GeV呢,为什么?答: 因为3MeV电子的在Nal中的射程仅为4mm,不足以射出1cm的Nal球;由于电子能量可能以轫致辐射的方式损失,而轫致辐射产

13、生的X射线可能穿透Nal 球出去,因此 Nal 晶体球沉积的能量小于 30GeV;6)B射线与单能快电子的区别是什么?当一束B射线射入某种介质时,随着入射深度的不 断延伸,我们能够观测到的电子数目会越来越少,其减少规律近似地服从一种规律,是 什么()?答: B射线的电子能量是连续的,不是单一的; 这个规律是“指数”衰减规律;7)对于不带电的粒子,我们通常关心的是Y射线和中子。它们是间接致电离粒子,需要先 通过某些反应变成带电粒子才可以电离。对于Y射线来说,它能不能和射入的介质发生 相互作用是一个()事件。在射入某个介质之后,它可能和介质中的原子发生三种反应(虽然不局限于此三种,但我们只感兴趣这

14、三种),分别是什么?这三种反应的截面与 原子序数和能量关系很重要,这个关系是什么?请说出这三种反应的产物及其可能存在 的后续反应的产物都是什么?答:随机事件; 光电效应、康普顿散射、电子对效应(Y射线能量超过1.022MeV); 这三种反应的截面与原子序数的关系是Z的5次方、1次方和2次方;与能量的关 系总的来讲:随着能量提高,光电效应和康普顿散射反应的截面下降,而电子对效 应的截面提高(有阈值1.022MeV); 光电效应的产物:光电子,内层电子空位导致的后续X射线或俄歇电子; 康普顿散射:反冲电子,散射光子;这个散射光子还能继续发生反应(光电、康普 顿、电子对等); 电子对效应:其动能分享

15、了 Y射线能量与1.022MeV之差的正负电子,正电子迅速 减速湮没(固体:ps时间)放出两个背向出射的511keVY光子;Y光子还能继续 发生光电效应或康普顿散射;8)对于中子来说,通常有核反应法、核反冲法、裂变法和活化法来将其转换为带电粒子。 这些带电粒子可能是()?核反应法常常用于测量低能的慢中子,此时中子的反应截面 与中子的能量之间存在一个关系,是什么关系?在慢中子能区,当中子的能量减小为原 来的 1/4时,其反应截面将变为原来的()?答: a粒子,质子,裂变碎片,反应生成的子核,电子; 1/v关系,2倍;9)如果不考虑积累因子,Y和中子穿透某种介质的概率服从什么规律?决定衰减系数的因 素有哪些?为什么要提出质量衰减系数这个概念?水和水蒸气的衰减系数是否相同,质 量衰减系数呢?积累因子的来源又是什么呢?答:指数衰减规律;决定线性衰减系数的是反应截面和原子的空间密度; 对于Y射线:反应截面由原子序数和入射的Y射线能量决定;对于中子:反应截面由原子核和入射的中子能量决定;提出质量衰减系数概念的原因是为了描述同种物质在不同物理状态下对射线的衰 减; 水的衰减系数比水蒸汽的答,但是质量衰减系数二者是相同的;积累因子的主要来源是康普对散射(电子对效应亦

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 建筑资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号