山西大学实验报告实验报告题目:多重共线性问题的检验和处理学 院: _专 业:课程名称: 计量经济学学 号:_学生姓名: 教师名称: 崔海燕上课时间:一、实验目的:熟悉和掌握 Eviews 在多重共线性模型中的应用,掌握多重共线性问题的检 验和处理二、实验原理:1、综合统计检验法;2、相关系数矩阵判断;3、逐步回归法;三、实验步骤:(一)新建工作文件并保存打开Eviews软件,在主菜单栏点击File\new\workf il e,输入st ar t date 1978和end date 2006并点击确认,点击save键,输入文件名进行保存二)输入并编辑数据在主菜单栏点击Quick键,选择empty'group新建空数据栏,根据理论和经 验分析,影响粮食生产(Y)的主要因素有农业化肥施用量(X1)、粮食播种面积X2)、 成灾面积(X3)、农业机械总动力(X4)和农业劳动力(X5),其中成灾面积的符号为 负,其余均应为正下表给出了 1983——2000中国粮食生产的相关数据点击name 键进行命名,选择默认名称Group01,保存文件YX1X2X3X4X5198338728166011404716209180223115119844073117401128841526419497308681985379111776108845227052091331130198639151193111093323656229503125419874020819991112682039324836316631988394082142110123239452657532249198940755235711220524449280673322519904462425901134661781928708389141991435292806112314278142938939098199244264293011056025895303083866919934564931521105092313331817376801994445103318109544313833380236628199546662359411006022267361183553019965045438281125482123338547348201997494173981112912303094201634840199851230408411378725181452083517719995083941241131612673148996357682000462184146108463343745257436043200145264425410608031793551723651320024570643391038912731957930368702003430704412994103251660387365462004469474637101606162976402835269200548402476610427819966683983397020064980449281049582463272522325612007501605108105638250647659031444(三)用普通最小二乘法估计模型参数用最小二乘法估计模型参数。
分别对y、xl、x2、x3、x4、x5取对数,克服 序列相关性以及成为线性关系,建立y对所有解释变量的回归模型:lny=p +0 *lnxl +0 *lnx2+0 *lnx3+0 *lnx4+0 *lnx5+u在主菜单栏点击Quick\Estimate Equation,出现对话框,输入“lnyClnxl lnxl lnx2 lnx3 lnx4 lnx5”,默认使用最小二乘法进行回归分析,得到多元线 性方程模型参数:Dependent Variable: LNYMethod: Least SquaresDate: 12/19/13 Time: 08:49Sample: 1983 2007 Included observations: 25VariableCoefficie ntStd. Errort-StatisticProb.C-4.1697571.923113-2.1682330.0430LNX10.3812470.0502277.5904970.0000LNX21.2222100.1351329.0445850.0000LNX3-0.0811010.015299-5.3010320.0000LNX4-0.0473020.044750-1.0570210.3038LNX5-0.1014270.057713-1.7574470.0949R-squared0.981607Mean dependent var10.70905Adjusted R-squared0.976767S.D. dependent var0.093396S.E. of regression0.014236Akaike info criterion-5.460540Sum squared resid0.003851Schwarz criterion-5.168010Log likelihood74.25675F-statistic202.8006Durb in-Wats on stat1.792233Prob(F-statistic)0.000000Lny"=-4.16+0.382lnx1+1.222lnx2-0.081lnx3-0.048lnx4-0.102lnx5从计算结果看,=0.981607 较大并接近于1, F=202.8006>F0.05(5,19)=2.,74 故认为粮食生产量与上述所有解释变量间总体线性相关显般的,t的绝对值大于2, 则解释变量对被解释变量关系显著,但悬4、X5前参数未通过检验,而且符号的 经济意义也不合理,故认为解释变量间存在多重共线性。
为了进一步检验多重共线性 进行下面操作四)多重共线性检验 计算解释变量间的两两相关系数,得到简单相关系数矩阵如下:Lnx1Lnx2Lnx3Lnx4Lnx5Lnx11-0.5687441330.4517002440.9643565840.440575584792338116742lnx2-0.568744131-0.214097210 -0.697625004 -0.0734480643792616461922Lnx30.451700244-0.21409721010.3987801070.411377048338616434274Lnx40.964356584-0.6976250040.39878010710.27991758111646434652Lnx50.440575584-0.0734480640.4113770480.27991758117421922274652从相关分析结果来看,部分解释变量间确实存在相关,尤其与X4之间相关性达 0.96435658411,6 高度相关为了处理多重共线性,正确选择解释变量,进行逐步 回归,首先选择最优的基本方程五)多重共线性检验1、找出最简单的回归形式,分别做粮食生产量对各个解释变量的回归,得A. Y对X1回归结果:Dependent Variable: LNYMethod: Least SquaresDate: 12/19/13 Time: 09:15Sample: 1983 2007Included observations: 25VariableCoefficie ntStd. Error t-StatisticProb.C8.9020080.206034 43.206570.0000LNX10.2240050.025515 8.7792930.0000R-squared0.770175Mean dependent var10.70905Adjusted R-squared0.760182S.D. dependent var0.093396S.E. of regression0.045737Akaike info criterion-3.255189Sum squared resid0.048114Schwarz criterion-3.157679Log likelihood42.68986F-statistic77.07599Durb in-Wats on stat 0.939435.Prob(F-statistic) 0.000000b. Y对X2回归结果Dependent Variable: LNYMethod: Least SquaresDate: 12/19/13 Time: 09:15Sample: 1983 2007In eluded observatio ns: 25CLNX215.15748 5.912971 2.563429 0.0174-0.383434 0.509669 -0.752321 0.4595R-squared0.024017Mean dependent var10.70905Adjusted R-squared-0.018417S.D. dependent var0.093396S.E. of regression0.094252Akaike info criterion-1.809063Sum squared resid0.204321Schwarz criterion-1.711553Log likelihood24.61329F-statistic0.565986Durb in-Wats on stat0.335219Prob(F-statistic)0.459489c.Y 对 X3 回归结果:Dependent Variable: LNYMethod: Least SquaresDate: 12/19/13 Time: 09:16Sample: 1983 2007Included observations: 25。