滑块与木板模型

上传人:桔**** 文档编号:392302800 上传时间:2023-09-19 格式:DOC 页数:11 大小:137KB
返回 下载 相关 举报
滑块与木板模型_第1页
第1页 / 共11页
滑块与木板模型_第2页
第2页 / 共11页
滑块与木板模型_第3页
第3页 / 共11页
滑块与木板模型_第4页
第4页 / 共11页
滑块与木板模型_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《滑块与木板模型》由会员分享,可在线阅读,更多相关《滑块与木板模型(11页珍藏版)》请在金锄头文库上搜索。

1、高中物理模块化复习学生学案专项一滑块与木板一 应用力和运动的观点解决 (即应用牛顿运动定律)典型思维措施:整体法与隔离法注意运动的相对性【例1】木板M静止在光滑水平面上,木板上放着一种小滑块m,与木板之间的动摩擦因数,为了使得m能从M上滑落下来,求下列多种状况下力F的大小范畴。【例2】如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一种小滑块,小滑块质量m=1kg,其尺寸远不不小于L,它与木板之间的动摩擦因数=0.4,g=10m/s2,(1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范畴.(2)若其他条件不变,恒力F=22

2、.8N,且始终作用在M上,求m在M上滑动的时间.【例3】质量m=1kg的滑块放在质量为M=1kg的长木板左端,木板放在光滑的水平面上,滑块与木板之间的动摩擦因数为0.1,木板长L=75cm,开始时两者都处在静止状态,如图所示,试求:(1)用水平力F0拉小滑块,使小滑块与木板以相似的速度一起滑动,力F0的最大值应为多少?(2)用水平恒力F拉小滑块向木板的右端运动,在t=0.5s内使滑块从木板右端滑出,力F应为多大?(3)按第(2)问的力F的作用,在小滑块刚刚从长木板右端滑出时,滑块和木板滑行的距离各为多少?(设m与M之间的最大静摩擦力与它们之间的滑动摩擦力大小相等)。(取g=10m/s2).x2

3、x1LF【例4】如图所示,在光滑的桌面上叠放着一质量为mA2.0kg的薄木板A和质量为mB=3 kg的金属块BA的长度L=2.0mB上有轻线绕过定滑轮与质量为mC=1.0 kg的物块C相连B与A之间的滑动摩擦因数 =0.10,最大静摩擦力可视为等于滑动摩擦力忽视滑轮质量及与轴间的摩擦起始时令各物体都处在静止状态,绳被拉直,B位于A的左端(如图),然后放手,求通过多长时间t后 B从 A的右端脱离(设 A的右端距滑轮足够远)(取g=10m/s2)例1解析(1)m与M刚要发生相对滑动的临界条件:要滑动:m与M间的静摩擦力达到最大静摩擦力;未滑动:此时m与M加速度仍相似。受力分析如图,先隔离m,由牛顿

4、第二定律可得:a=mg/m=g再对整体,由牛顿第二定律可得:F0=(M+m)a解得:F0=(M+m) g因此,F的大小范畴为:F(M+m)g(2)受力分析如图,先隔离M,由牛顿第二定律可得:a=mg/M再对整体,由牛顿第二定律可得:F0=(M+m)a解得:F0=(M+m) mg/M因此,F的大小范畴为:F(M+m)mg/M例2解析(1)小滑块与木板间的滑动摩擦力 f=FN=mg=4N滑动摩擦力f是使滑块产生加速度的最大合外力,其最大加速度 a1=f/m=g=4m/s2 当木板的加速度a2 a1时,滑块将相对于木板向左滑动,直至脱离木板F-f=m a2m a1 F f +m a1=20N 即当F

5、20N,且保持作用一般时间后,小滑块将从木板上滑落下来。(2)当恒力F=22.8N时,木板的加速度a2,由牛顿第二定律得F-f=a2解得:a24.7m/s2设两者相对滑动时间为t,在分离之前小滑块:x1= a1t2 木板:x1= a2t2 又有x2x1=L 解得:t=2s 例3解析:(1)对木板M,水平方向受静摩擦力f向右,当f=fm=mg时,M有最大加速度,此时相应的F0即为使m与M一起以共同速度滑动的最大值。对M,最大加速度aM,由牛顿第二定律得:aM= fm/M=mg/M =1m/s2要使滑块与木板共同运动,m的最大加速度am=aM, 对滑块有F0mg=mam因此F0=mg+mam=2N

6、即力F0不能超过2N(2)将滑块从木板上拉出时,木板受滑动摩擦力f=mg,此时木板的加速度a2为 a2=f/M=mg/M =1m/s2. 由匀变速直线运动的规律,有(m与M均为匀加速直线运动)木板位移x2= a2t2滑块位移 x1= a1t2位移关系x1x2=L将、式联立,解出a1=7m/s2对滑块,由牛顿第二定律得:Fmg=ma1因此F=mg+ma1=8N(3)将滑块从木板上拉出的过程中,滑块和木板的位移分别为x1= a1t2= 7/8mx2= a2t2= 1/8m例四:以桌面为参照系,令aA表达A的加速度,aB表达B、C的加速度,sA和sB分别表达 t时间 A和B移动的距离,则由牛顿定律和

7、匀加速运动的规律可得mCg-mBg=(mC+mB)aB mBg=mAaA sB=aBt2 sA=aAt2 sB-sA=L 由以上各式,代入数值,可得:t=4.0s 应用功和能的观点解决 (即应用动能定理,机械能守恒定律能量守恒定律)应用动量的观点解决 (即应用动量定理,动量守恒定律)子弹打木块模型:涉及一物块在木板上滑动等。NS相=Ek系统=Q,Q为摩擦在系统中产生的热量。小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :涉及小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其他形式的能,因此过程中系统机械能守恒。例

8、题:质量为M、长为l的木块静止在光滑水平面上,既有一质量为m的子弹以水平初速v0射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。 l v0 v S解:如图,设子弹穿过木块时所受阻力为f,突出时木块速度为V,位移为S,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv0=mv+MV 由动能定理,对子弹 -f(s+l)= 对木块 fs= 由式得 v= 代入式有 fs= +得 fl=由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=fl,l为子弹现木块的相对位移。结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即

9、 Q=E系统=NS相 其分量式为:Q=f1S相1+f2S相2+fnS相n=E系统 v0 A B1在光滑水平面上并排放两个相似的木板,长度均为L=1.00m,一质量与木板相似的金属块,以v0=2.00m/s的初速度向右滑上木板A,金属块与木板间动摩擦因数为=0.1,g取10m/s2。求两木板的最后速度。2如图示,一质量为M长为l的长方形木块B放在光滑水平面上,在其右端放一质量为m的小木块A,mM,现以地面为参照物,给A和B以大小相等、方向相反的初速度 v0 AB v0l(如图),使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板。以地面为参照系。若已知A和B的初速度大小为v0,求它们最后

10、速度的大小和方向;若初速度的大小未知,求小木块A向左运动到最远处(从地面上看)到出发点的距离。A 2v0 v0 B C3一平直木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同始终线从长木板C两端相向水平地滑上长木板。如图示。设物块A、B与长木板C间的动摩擦因数为,A、B、C三者质量相等。若A、B两物块不发生碰撞,则由开始滑上C到A、B都静止在C上为止,B通过的总路程多大?经历的时间多长?为使A、B两物块不发生碰撞,长木板C至少多长?4在光滑水平面上静止放置一长木板B,B的质量为M=2同,B右端距竖直墙5m,既有一小物块 A,质量为m=1,以v0=6m/s的速度从B左端

11、水平地滑上B。如图A v0 5m B所示。A、B间动摩擦因数为=0.4,B与墙壁碰撞时间极短,且碰撞时无能量损失。取g=10m/s2。求:要使物块A最后不脱离B木板,木板B的最短长度是多少?5如图所示,在光滑水平面上有一辆质量为M=4.00的平板小车,车上放一质量为m=1.96的木块,木块到平板小车左端的距离L=1.5m,车与木块一起以v=0.4m/s的速度向右行驶,一颗质量为m0=0.04的子弹以速度v0从右方射入木块并留在木块内,已知子弹与木块作用时间很短,木块与小车平板间动摩擦因数=0.2,取g=10m/s2。问:若要让木块不从小车上滑出,子弹初速度应满足什么条件? L v0 m v6一

12、质量为m、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m,在小车正中放一质量为m、长度为0.1m的物块,物块与小车间动摩擦因数=0.15。如图示。现给物块一种水平向右的瞬时冲量,使物块获得v0 =6m/s的水平初速度。物块与挡板碰撞时间极短且无能量损失。求:v0小车获得的最后速度;物块相对小车滑行的路程;物块与两挡板最多碰撞了多少次;物块最后停在小车上的位置。7一木块置于光滑水平地面上,一子弹以初速v0射入静止的木块,子弹的质量为m,打入木块的深度为d,木块向前移动S后以速度v与子弹一起匀速运动,此过程中转化为内能的能量为 A B. C. D.参照答案1. 金属块在板上滑动过程中,

13、统动量守恒。金属块最后停在什么位置要进行判断。假设金属块最后停在A上。三者有相似速度v,相对位移为x,则有 解得:,因此假定不合理,金属块一定会滑上B。设x为金属块相对B的位移,v1、v2表达A、B最后的速度,v0为金属块离开A滑上B瞬间的速度。有:在A上 全过程 联立解得: *解中,整个物理过程可分为金属块分别在A、B上滑动两个子过程,相应的子系统为整体和金属块与B。可分开列式,也可采用子过程全过程列式,事实上是整体部分隔离法的一种变化。2A恰未滑离B板,则A达B最左端时具有相似速度v,有 Mv0-mv0=(M+m)v Mm, v0,即与B板原速同向。A的速度减为零时,离出发点最远,设A的初速为v0,A、B摩擦力为f,向左运动对地最远位移为S,则 而v0最大应满足 Mv0-mv0=(M+m)v 解得:3由A、B、C受力状况知,当B从v0减速到零的过程中,C受力平衡而保持不动,此子过程中B的位移S1和运动时间t1分别为: 。然后B、C以g的加速度一起做加速运动。A继续减速,直到它们达到相似速度

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号