《2024届山东省青岛西海岸新区第一中学高一数学第一学期期末监测模拟试题含解析》由会员分享,可在线阅读,更多相关《2024届山东省青岛西海岸新区第一中学高一数学第一学期期末监测模拟试题含解析(15页珍藏版)》请在金锄头文库上搜索。
1、2024届山东省青岛西海岸新区第一中学高一数学第一学期期末监测模拟试题请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1下列函数在其定义域上既是奇函数又是减函数的是()A.B.C.D.2已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A.B.C.D.3已知函数,则不等
2、式的解集为( )A.B.C.D.4设向量不共线,向量与共线,则实数()A.B.C.1D.25已知点M与两个定点O(0,0),A(6,0)的距离之比为,则点M的轨迹所包围的图形的面积为( )A.B.C.D.6已知函数,函数有四个不同的的零点,且,则()A.a的取值范围是(0,)B.的取值范围是(0,1)C.D.7某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.8已知函数,且,则的值A.恒为正B.恒为负C.恒为0D.无法确定9已知,则A.B.C.D.10已知且,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本大题共6小题,每
3、小题5分,共30分。11已知圆C:(x2)2+(y1)210与直线l:2x+y0,则圆C与直线l的位置关系是_12已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_.13已知函数f(x)(a0,a1)是偶函数,则a _,则f(x)的最大值为_.14已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由15若幂函数在区间上是减函数,则整数_16经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是_三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步
4、骤。17已知圆的方程为,是坐标原点直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.18已知圆:关于直线:对称的图形为圆.(1)求圆的方程;(2)直线:,与圆交于,两点,若(为坐标原点)的面积为,求直线的方程.19已知定义在上的函数是奇函数(1)求实数,的值;(2)判断函数的单调性;(3)若对任意的,不等式有解,求实数的取值范围20已知角的终边与单位圆交于点(1)写出、值; (2)求的值21已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有
5、一项是符合题目要求的1、D【解析】对于A:由定义法判断出不是奇函数,即可判断;对于B:判断出在R上为增函数,即可判断;对于C:不能说在定义域是减函数,即可判断;对于D:用图像法判断.【详解】对于A:的定义域为R.所以不是奇函数,故A错误;对于B:在R上为增函数.故B错误;对于C:在为减函数,在为减函数,但不能说在定义域是减函数.故C错误;对于D:,作出图像如图所示:所以既是奇函数又是减函数.故D正确.故选:D2、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,所以是偶函数,不符合图2.A错.C选项,所以是偶函数,不符合图2.C错.D选项,所
6、以的定义域不包括,不符合图2.D错.B选项,所以是奇函数,符合图2,所以B符合.故选:B3、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】函数,定义域为R,函数为偶函数,且在上为增函数,即,又,.故选:D.4、A【解析】由向量共线定理求解【详解】因为向量与共线,所以存在实数,使得,又向量不共线,所以,解得故选:A5、B【解析】设M(x,y),由点M与两个定点O(0,0),A(3,0)的距离之比为,得:,整理得:(x+2)2+y2=16点M的轨迹方程是圆(x+2)2+y2=16圆的半径为:4,所求轨迹的面积为:16故答案为B.6、D【解析】将问题转化为
7、与有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误.【详解】有四个不同的零点、,即有四个不同的解的图象如下图示,由图知:,所以,即的取值范围是(0,)由二次函数的对称性得:,因为,即,故故选:D【点睛】关键点点睛:将零点问题转化为函数交点问题,应用数形结合判断交点横坐标的范围或数量关系.第II卷7、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.8、A【解析】根据题意可得函数是奇函数,且在上单调递增然后由,可得,结合单调性可得,所以,以上三式两边分
8、别相加后可得结论【详解】由题意得,当时,于是同理当时,可得,又,所以函数是上的奇函数又根据函数单调性判定方法可得在上为增函数由,可得,所以,所以,以上三式两边分别相加可得,故选A.【点睛】本题考查函数奇偶性和单调性的判断及应用,考查函数性质的应用,具有一定的综合性和难度,解题的关键是结合题意得到函数的性质,然后根据单调性得到不等式,再根据不等式的知识得到所求9、A【解析】故选10、D【解析】根据充分、必要条件的知识确定正确选项.【详解】“”时,若,则,不能得到“”.“”时,若,则,不能得到“”.所以“”是“”的既不充分也不必要条件.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11
9、、相交【解析】根据题意只需判断圆心到直线的距离与半径比较大小即可判断详解】由题意有圆心,半径则圆心到直线的距离 故直线与圆C相交故答案为:相交【点睛】本题主要考查直线和圆的位置关系的判断,属于基础试题12、【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【详解】因为已知是定义在R上的偶函数,所以由,又因为 上单调递减,所以有.当时,;当时,.故答案为:【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.13、 . .【解析】根据偶函数f(x)f(x)即可求a值;分离常数,根据单调性即可求最大值,或利用基本不等式
10、求最值.【详解】是偶函数,则,则,即,则,则,则,当且仅当,即,则时取等号,即的最大值为,故答案为:,14、(1)(2)存在;(或)【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,当时,要使函数在区间上为增函数,则
11、函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.15、2【解析】由题意可得,求出的取值范围,从而可出整数的值【详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:216、或【解析】设所求直线方程为 ,将点代入上式可得或.考点:直线的方程三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(
12、1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆心到直线的距离,解得或即k的取值范围为.(2)当过点P的直线斜率不存在时,即x=2 与圆相切,符合题意.当过点P的直线斜率存在时,设其方程为即,由圆心(0,4)到直线的距离等于2,可得解得,故直线方程为综上所述,圆的切线方程为或【点睛】此题考查直线和圆的位置关系,结合圆的几何性质处理相交相切,过某点的直线在设其方程的时候一定注意讨论斜率是否存在,这是一个易错点,对逻辑思维能力要求较高,当然也可以考虑直线与二次曲线的常规解法
13、.18、(1),(2)【解析】(1)设圆圆心为,则由题意得,求出的值,从而可得所求圆的方程;(2)设圆心到直线:的距离为,原点到直线:的距离为,则有,再由的面积为,列方程可求出的值,进而可得直线方程【详解】解:(1)设圆的圆心为,由题意可得,则的中点坐标为,因为圆:关于直线:对称的图形为圆,所以,解得,因为圆和圆的半径相同,即,所以圆的方程为,(2)设圆心到直线:的距离为,原点到直线:的距离为,则,所以所以,解得,因为,所以,所以直线的方程为【点睛】关键点点睛:此题考查圆的方程的求法,考查直线与圆的位置关系,解题的关键是利用点到直线的距离公式表示出圆心到直线的距离为,原点到直线的距离为,再表示
14、出,从而由的面积为,得,进而可求出的值,问题得到解决,考查计算能力,属于中档题19、(1), (2)在上为减函数 (3)【解析】(1)由,求得,再由,求得,结合函数的奇偶性的定义,即可求解;(2)化简,根据函数的单调性的定义及判定方法,即可求解;(3)根据题意化简不等式为在有解,结合正弦函数和二次函数的性质,即可求解.【小问1详解】解:由题意,定义在上的函数是奇函数,可得,解得,即,又由,可得,解得,所以,又由,所以,.【小问2详解】解:由,设,则,因为函数在上增函数且,所以,即,所以在上为减函数.【小问3详解】解:由函数在上为减函数,且函数为奇函数,因为,即,可得,又由对任意的,不等式有解,即在有解,因为,则,所以,所以,即实数的取值范围是.20、(1)=;=;=(2)【解析】(1)根据已知角的终边与单位圆交于点,结合三角函数的定义即可得到、的值;(2)依据三角函数的诱导公式化简即可,最