《北京市海淀区六一中学2024届高三下学期期末模拟卷(一)数学试题》由会员分享,可在线阅读,更多相关《北京市海淀区六一中学2024届高三下学期期末模拟卷(一)数学试题(19页珍藏版)》请在金锄头文库上搜索。
1、北京市海淀区六一中学2024届高三下学期期末模拟卷(一)数学试题注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则下列不等式正确的是( )ABCD2若为虚数单位,则复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限3已知x,y满足不等式
2、组,则点所在区域的面积是( )A1B2CD4已知f(x)=是定义在R上的奇函数,则不等式f(x-3)f(9-x2)的解集为( )A(-2,6)B(-6,2)C(-4,3)D(-3,4)5相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为( )ABCD6对于任意,函数满足,且当时,函数.若,则大小关系是( )ABCD7数列an,满足对任意的nN+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列an的前100项的和S100=( )A132B299C68D998设递增的等
3、比数列的前n项和为,已知,则( )A9B27C81D9已知函数是偶函数,当时,函数单调递减,设,则的大小关系为()ABCD10已知复数满足(是虚数单位),则=()ABCD11设全集为R,集合,则ABCD12设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面二、填空题:本题共4小题,每小题5分,共20分。13展开式中项的系数是_14已知函数在上单调递增,则实数a值范围为_.15函数在的零点个数为_16在三棱锥P-ABC中,三个侧面与底面所成的角均为,三棱锥的内切球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算
4、步骤。17(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.18(12分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,且平面平面,点在线段上移动(不与重合),是的中点.(1)当四面体的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时
5、,求平面与平面所成锐二面角的余弦值.19(12分)如图,在四棱锥中,是等边三角形,.(1)若,求证:平面;(2)若,求二面角的正弦值20(12分)设为坐标原点,动点在椭圆:上,该椭圆的左顶点到直线的距离为.(1)求椭圆的标准方程;(2)若椭圆外一点满足,平行于轴,动点在直线上,满足.设过点且垂直的直线,试问直线是否过定点?若过定点,请写出该定点,若不过定点请说明理由.21(12分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412
6、y5152258y与x可用回归方程 ( 其中,为常数)进行模拟()若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元|()据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;()求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,22(10分)选修4-5:不等式选讲设函数(1) 证明:;(2)若不等式的解集非空,求的取值范围参考答案一、选择题:本
7、题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解题分析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项【题目详解】已知,赋值法讨论的情况:(1)当时,令,则,排除B、C选项;(2)当时,令,则,排除A选项.故选:D.【题目点拨】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题2D【解题分析】根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案【题目详解】由题意,根据复数的运算,可得,所对应的点为位于第四
8、象限.故选D.【题目点拨】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题3C【解题分析】画出不等式表示的平面区域,计算面积即可.【题目详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,所以阴影部分面积.故选:C.【题目点拨】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.4C【解题分析】由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【题目详解】因为是定义在R上的奇函数,所以,即
9、,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【题目点拨】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.5B【解题分析】根据循环语句,输入,执行循环语句即可计算出结果.【题目详解】输入,由题意执行循环结构程序框图,可得:第次循环:,不满足判断条件;第次循环:,不满足判断条件;第次循环:,满足判断条件;输出结果.故选:【题目点拨】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.6A【解题分析】由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.【题目详解】对于任意,
10、函数满足,因为函数关于点对称,当时,是单调增函数,所以在定义域上是单调增函数.因为,所以,.故选:A.【题目点拨】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题.7B【解题分析】由为定值,可得,则是以3为周期的数列,求出,即求.【题目详解】对任意的,均有为定值,故,是以3为周期的数列,故,.故选:.【题目点拨】本题考查周期数列求和,属于中档题.8A【解题分析】根据两个已知条件求出数列的公比和首项,即得的值.【题目详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【题目点拨】本题主要考查等比数列的通项和求和公式,意在
11、考查学生对这些知识的理解掌握水平.9A【解题分析】根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【题目详解】为偶函数 图象关于轴对称图象关于对称时,单调递减 时,单调递增又且 ,即本题正确选项:【题目点拨】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.10A【解题分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【题目详解】解:由,得,故选【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题11B【解题分析】分析:由题意
12、首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.12B【解题分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【题目详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B【题目点拨】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:
13、“若,则”此类的错误二、填空题:本题共4小题,每小题5分,共20分。13-20【解题分析】根据二项式定理的通项公式,再分情况考虑即可求解【题目详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:【题目点拨】本题主要考查二项式定理的应用,注意分情况考虑,属于基础题14【解题分析】由在上恒成立可求解【题目详解】,令,又,从而,令,问题等价于在时恒成立,解得故答案为:【题目点拨】本题考查函数的单调性,解题关键是问题转化为恒成立,利用换元法和二次函数的性质易求解15【解题分析】求出的范围,再由函数值为零,得到的取值可得零点个数【题目详解】详解:由题可知,或解得,或故有3个零点【题目点拨】本题主要考查三角函数的性质和函数的零点,属于基础题16【解题分析】先确定顶点在底面的射影,再求出三棱锥的高以及各侧面三角形的高,利用各个面的面积和乘以内切球半径等于三棱锥的体积的三倍即可解决.【题目详解】设顶点在底面上的射影为H,H是三角形ABC的内心,内切圆半径.三个侧面与底面所成的角均为,的高,设内切球的半径为R,内切球表面积.故答案为:.【题目点拨】本题考查三棱锥内切球的表面积问题,考查学生空间想象能力,本题解题关键是找到内切球的半径,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)点M的极坐标为或(2)【解题