甘肃省天水市重点中学2024届高三3月月考数学试题理试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )A. B. C. D.2.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=( ).A.1 B. C.2 D.33.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于( )A. B.8 C. D.44.圆心为且和轴相切的圆的方程是( )A. B.C. D.5.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( )A.AC⊥BE B.EF平面ABCDC.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值6.设为等差数列的前项和,若,,则的最小值为( )A. B. C. D.7.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是( )A. B. C. D.8.若直线与曲线相切,则( )A.3 B. C.2 D.9.函数 的部分图象如图所示,则 ( )A.6 B.5 C.4 D.310.已知是虚数单位,若,则( )A. B.2 C. D.1011.一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有( )A. B. C. D.12.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则( )A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
13.设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_________时,为的几何平均数.(只需写出一个符合要求的函数即可)14.已知椭圆C:1(a>b>0)的左、右焦点分别为F1,F2,椭圆的焦距为2c,过C外一点P(c,2c)作线段PF1,PF2分别交椭圆C于点A、B,若|PA|=|AF1|,则_____.15.设为数列的前项和,若,,且,,则________.16.已知函数,若,则实数的取值范围为__________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图所示,直角梯形ABCD中,,,,四边形EDCF为矩形,,平面平面ABCD.(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值.(3)段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的长,若不存在,请说明理由.18.(12分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.19.(12分)已知等比数列,其公比,且满足,和的等差中项是1.(Ⅰ)求数列的通项公式;(Ⅱ)若,是数列的前项和,求使成立的正整数的值.20.(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)设曲线与曲线相交于,两点,求的值.21.(12分)在中,内角的对边分别是,已知.(1)求的值;(2)若,求的面积.22.(10分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解题分析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【题目详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【题目点拨】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.2、C【解题分析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;3、C【解题分析】将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.【题目详解】F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故选C.【题目点拨】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.4、A【解题分析】求出所求圆的半径,可得出所求圆的标准方程.【题目详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【题目点拨】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.5、D【解题分析】A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假.【题目详解】A.因为,所以平面,又因为平面,所以,故正确;B.因为,所以,且平面,平面,所以平面,故正确;C.因为为定值,到平面的距离为,所以为定值,故正确;D.当,,取为,如下图所示:因为,所以异面直线所成角为,且,当,,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【题目点拨】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.6、C【解题分析】根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.【题目详解】依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.故选:C【题目点拨】本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.7、B【解题分析】根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【题目详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【题目点拨】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.8、A【解题分析】设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【题目详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【题目点拨】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.9、A【解题分析】根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【题目详解】由图象得,令=0,即=kπ,k=0时解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故选:A.【题目点拨】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.10、C【解题分析】根据复数模的性质计算即可.【题目详解】因为,所以,,故选:C【题目点拨】本题主要考查了复数模的定义及复数模的性质,属于容易题.11、B【解题分析】计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【题目详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【题目点拨】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.12、D【解题分析】如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【题目详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,,.故,故,.故选:.【题目点拨】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.二、填空题:本题共4小题,每小题5分,共20分。
13、【解题分析】由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【题目详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为: .【题目点拨】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.14、【解题分析】根据条件可得判断OA∥PF2,且|PF2|=2|OA|,从而得到点A为椭圆上顶点,则有b=c,解出B的坐标即可得到比值.【题目详解】因为|PA|=|AF1|,所以点A是线段PF1的中点,又因为点O为线段F1F2的中点,所以OA∥PF2,且|PF2|=2|OA|,因为点P(c,2c),所以PF2⊥x轴,则|PF2|=2c,所以OA⊥x轴,则点A为椭圆上顶点,所以|OA|=b,则2b=2c,所以b=c,ac,设B(c,m)(m>0),则,解得mc,所以|BF2|c,则.故答案为:2.【题目点拨】本题考查椭圆的基本性质,考查直线位置关系的判断,方程思想,属于中档题.15、【解题分析】由题可得,解得,所以,,上述两式相减可得,即,因为,所以,即,所以数列是以为首项,为公差的等差数列,所以.16、【解题分析】画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.【题目详解】作出函数的图如下所示,观察可知,函数为偶函数,且在上单调递增,在上单调递减,故,故实数的取值范围为.故答案为: 【题目点拨】本题考查利用函数奇偶性及单调性解不等式. 函数奇偶性的常用结论:(1)如果函数是偶函数,那么.(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17、(I)见解析(II)(III)【解题分析】试题分。