文档详情

四年级奥数——巧妙求和(剖析版)

优雅的****66
实名认证
店铺
DOCX
289.94KB
约14页
文档ID:374182668
四年级奥数——巧妙求和(剖析版)_第1页
1/14

第11讲 巧妙求和教学目标l 掌握等差数列的基本概念,首项、末项、公差等;l 掌握等差数列的常用公式,并能灵活运用知识梳理一、数列的概念按一定顺序排成的一列数叫做数列数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项数列中共有的项的个数叫做项数如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列二、等差数列与公差一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差三、常用公式等差数列的总和=(首项+末项)项数2项数=(末项-首项)公差+1末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项-首项)(项数-1)等差数列(奇数个数)的总和=中间项项数 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.典例分析考点一:等差数列的基本认识例1、下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由①6,10,14,18,22,…,98;②1,2,1,2,3,4,5,6;③ 1,2,4,8,16,32,64;④ 9,8,7,6,5,4,3,2;⑤3,3,3,3,3,3,3,3;⑥1,0,1,0,l,0,1,0;【考点】等差数列的基本认识【解析】①是,公差d=4.②不是,因为数列的第3项减去第2项不等于数列的第2项减去第1项.③不是,因为4-2≠2-1.④是,公差d=l.⑤是,公差d=0.⑥不是,因为第1项减去第2项不等于第2项减去第3项。

例2、把比100大的奇数从小到大排成一列,其中第21个是多少?【考点】等差数列的基本认识【解析】该数列为等差数列,首项为101,公差为2,第21个数的项数为21.则101+(21-1)×2=141例3、已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【考点】等差数列的基本认识【解析】把数列列出来:答案:例4、2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【考点】等差数列公式的简单运用【解析】利用等差数列的“中项定理”,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值,五个连续偶数的中间一个数应为,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.例5、5、8、11、14、17、20、,这个数列有多少项?它的第201项是多少?65是其中的第几项?【考点】等差数列公式的简单运用【解析】它是一个无限数列,所以项数有无限多项.第项首项公差,所以,第201项,对于数列5,8,11,,65,一共有:,即65是第21项.答案:无限多项;第项是;是第项考点二:等差数列求和例1、一个等差数列2,4,6,8,10,12,14,这个数列各项的和是多少?【考点】等差数列的求和【解析】根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:.答案:例2、15个连续奇数的和是1995,其中最大的奇数是多少?【考点】等差数列的求和【解析】由中项定理,中间的数即第8个数为:,所以这个数列最大的奇数即第15个数是:答案:例3、小马虎计算1到2006这2006个连续整数的平均数。

在求这2006个数的和时,他少算了其中的一个数,但他仍按2006个数计算平均数,结果求出的数比应求得的数小1小马虎求和时漏掉的数是考点】等差数列的求和【解析】少的这个数应该给每一个数都补上1,才能使结果正确,共要补上2006,因此这个漏掉的数是2006例4、下列数阵中有100个数,它们的和是多少?【考点】数阵中的等差数列【解析】方法一:用基本公式算所给数列的和,可以一行行算,或者一列列算,然后把所得的和相加.(比较慢,这里不再写具体过程)方法二:每一行或者每一列的和均构成一个等差数列,利用等差数列和中间项项数.先看行,因为是偶数行没有中间项,首项,末项或者.这100个数之和.按列算同上.方法三:从右上到左下的对角线上的数都是20,沿此对角线对折,上下重叠的两数之和都是40,所以这100个数的平均数是20,这100个数之和.答案:考点三:等差数列的应用例1、已知数列:2,1,4,3,6,5,8,7,,问2009是这个数列的第多少项?【考点】等差数列的公式运用【解析】偶数项的排列规律是:1、3、5、7, 奇数项的排列规律是:2、4、6、8,方法一:可以看出两个数列都是等差数列.由于2009是奇数,所以在偶数项数列中,它的项数是:,所以在整个数列中,2009的项数是,所以2009是这个数列的第2010项.方法二:仔细观察能发现,在整个数列中,奇数的项数是该数,偶数的项数是该数,所以2009是这个数列的第项.答案:例2、在11~45这35个数中,所有不被3整除的数的和是多少?【解析】先求被3整除的数的和;11~45中能被3整除的数有12,15,…,45,和为:;于是,满足要求的数的和为:.例3、如图2,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N=5时,按这种方式摆下去,当N=5时,共需要火柴棍           根。

考点】找规律计算【解析】找规律3,3+6,3+6+9…,N=5时,需要火柴棍3+6+9+12+15=45答案:例4、将一些半径相同的小圆按如下所示的规律摆放:第1个图形中有6个小圈,第2个图形中有10个小圈,第3个图形中有16个小圈,第4个图形中有24个小圈,…,依此规律,第6个图形有___________个小圈考点】找规律计算2010年,第8届,希望杯,4年级,1试【解析】除周围4个小圆外,中间小圆的规律是1×2,2×3,3×4,……,第6个图有6×7+4=46个小圆答案:实战演练Ø 课堂狙击1、在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?【解析】(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+1,便可求出2)根据公式:末项=首项+公差(项数-1)解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67个数,第201个数是6032、全部三位数的和是多少?【解析】所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。

要求和可以利用等差数列求和公式来解答  解:(100+999)9002 =10999002=494550答:全部三位数的和是4945503、求下列方阵中所有各数的和: 1、2、3、4、……49、50; 2、3、4、5、……50、51; 3、4、5、6、……51、52;…… 49、50、51、52、……97、98;50、51、52、53、……98、99解析】这个方阵的每一横行(或竖行)都各是一个等差数列,可先分别求出每一横行(或竖行)数列之和,再求出这个方阵的和  解:每一横行数列之和:第一行:(1+50)502=1275第二行:(2+51)502=1325第三行:(3+51)502=1375……第四十九行:(49+98)502=3675第五十行:(50+99)502=3725方阵所有数之和: 1275+1325+1375+……+3675+3725 =(1275+3725)502 =1250004、 若干人围成16圈,一圈套一圈,从外向内圈人数依次少6人,如果共有912人,问最外圈有多少人?最内圈有多少人?5、 【解析】从已知条件912人围成16圈,一圈套一圈,从外到内各圈依次减少6人,也就是告诉我们这个等差数列的和是912,项数是16,公差是6。

题目要求是的等差数列末项=d ×(n-1)=6× (16-1)=90(人)解:a+a=S2n=912216=114(人)外圈人数=(90+114)2=102(人)内圈人数=(114-90)2=12(人)答:最外圈有102人,最内圈有12人5、有一串数,已知第一个数是6,而后面的每一个数都比它前面的数大4,这串数中第2003个数是解析】6+4(2003-1)=6+42002=80146、一个剧院共有25排座位,从第一排起,以后每排都比前一排多2个座位,第25排有70个座位,这个剧院共有多少个座位解析】首项=70-(25-1)×2=22 总和=(22+70)×25÷2=11507、一个五层书架共放了600本书,已知下面一层都比上面一层多10本书最上面一层放本书,最下面一层放本书解析】100、140中间一层本数:6005=120(本)最上面一层:12-102=100(本)最下面一层:120+12=140(本8、有10只盒子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?【解析】题中要求办不到9、有一堆粗细均匀的圆木,堆成如下图的形状,最上面一层有7根园木,每面下层增加1根,最下面一层有95根,问:这堆圆木一共有多少根?【解析】7+95=102(根) 95-7+1=89(层) 102892=4539(根)10、有一个六边形点阵,如下图,它的中心是一个点,算做第一层,第二层每边有两个点,第三层每边有三个点……这个六边形点阵共100层,问,这个点阵共有多少个点?【解析】第100层有点:6+(99-1)6 =6+986 =699 =594(个)点阵只有点: 1+(6+594)992 =1+600992 =29701(个) 答:这个点阵共有点29701个。

Ø 课堂反击1、观察右面的五个数:19、37、55、a、91排列的规律,推知a =________ 解析】19+18=37,37+18=55,所以a=55+18=73答案:2、2,5,8,11,14……是按照规律排列的一串数,第21项是多少?【考点】等差数列的基本认识【解析】此数列为一个等差数列,将第21项看做末项末项=2+(21-1)×3=62答案:3、在等差数列6,13,20,27,…中,从左向右数,第 _______个数是1994.【考点】等差数列公式的简单运用【解析】每个数比前一个数大7,根据求通项的公式得,列式得:即第285个数是1994.4、有20个数,第1个数是9,以后每个数都比前一个数大3.这20个数相加,和是多少?【考点】等差数列的求和【解析】末项是:,和是:答案:5、把210拆成7。

下载提示
相似文档
正为您匹配相似的精品文档