《三轴四档式手动变速器设计》由会员分享,可在线阅读,更多相关《三轴四档式手动变速器设计(57页珍藏版)》请在金锄头文库上搜索。
1、-三轴四档式手动变速器设计1 绪论1.1概述自1886年世界上第一辆汽车诞生以来,汽车已经历了近120年的开展。随着科学技术的日益开展,汽车的各项性能也日臻完善。现代汽车已成为世界各国国民经济和社会生活中不可缺少的交通工具。现代汽车除了装有性能优良的发动机外还应该有性能优异的传动系与之匹配才能将汽车的性能淋漓尽致的发挥出来,因此汽车变速器的设计显得尤为重要。动力传动系统是指动力装置输出的动力,经过传动系统到达驱动车轮之间的一系列部件的总称,它使汽车实现起步、变速、减速、差速、变向等功能,为汽车提供良好的动力性与燃油经济性能。其根本功能是将发动机发出的动力传给驱动车轮。动力传递的方式按构造和传动
2、介质可分为机械式、液力机械式、静液式容积液压式、电力式等。传动系的组成及其在汽车上的布置形式,取决于发动机的形式和性能、汽车总体构造形式、汽车行驶系及传动系本身的构造形式等许多因素。变速器在发动机和汽车之间主要起着匹配作用,通过改变变速器的传动比,可以使发动机在最有利的工况围工作。变速器通常还设有到档,在不改变发动机旋转方向的情况下汽车能倒退行驶;设有空档,在滑行或停车时发动机和传动系能保持别离。变速器还应能进展动力输出。手动变速器根本上是由齿轮、轴、轴承、同步器等动力传动部件组成。变速器能使汽车以非常低的稳定车速行驶,而这种低的车速只靠燃机的最低稳定转速是难以到达的。变速器的倒档使汽车可以倒
3、退行驶;其空档使汽车在启动发动机、停车和滑行时能长时间将发动机与传动系别离。变速器由变速器传动机构和操纵机构组成。根据需要,还可以加装动力输出器。按传动比变化方式,变速器可以分为有级式、无级式和综合式三种。有级式变速器应用最为广泛。它采用齿轮传动,具有假设干个定值传动比。按所用轮系形式不同,有轴线固定式普通变速器和轴线旋转式变速器行星齿轮变速器两种。目前,轿车和轻、中型货车变速器的传动比通常有35个前进档和一个倒档,在重型货车用的组合变速器中,则有更多档位。所谓变速器档数即指其前进档位数。无级式变速器的传动比在一定的数值围可按无限多级变化,常见的有电力式和液力式动液式两种。电力式无级变速器的变
4、速传动部件为直流串激电动机,除在无轨电车上应用外,在超重型自卸车传动系中也有广泛采用的趋势。动液式无级变速器的传动部件是液力变矩器。综合式变速器是指由液力变矩器和齿轮式有级变速器组成的液力机械式变速器,其传动比可在最大值与最小值之间的几个连续的围作无级变化,目前应用较多。强制操纵式变速器靠驾驶员直接操纵变速杆换挡,为大多数汽车所采用。半自动操纵式变速器有两种型式。一种是常用的几个档位自动操纵,其余档位则由驾驶员操纵;另一种是预选式,即驾驶员预先用按钮选定档位,在踩下离合器踏板或松开加速踏板时,接通一个电磁装置或液压装置来进展换档。在多轴驱动汽车上,变速器之后还装有分动器,以便把转矩分别输送给各
5、驱动桥。除此之外,变速器还应当满足拆装容易和维修方便等要求。变速器由变速器传动机构和操纵机构组成。变速传动机构可按前进档数或轴的形式不同分类。具体分类如下:变 速 器三档变速器四档变速器五档变速器多档变速器固定轴式旋转轴式多中间轴式双中间轴式中间轴式两轴式变速器的构造对汽车的动力性、燃油经济性、换档操纵的可靠性与轻便性,传动的平稳性与效率性等都有直的影响。采用优化设计方法对变速器与主减速器,以及发动机的参数作优化匹配,可得到良好的动力性与燃油经济性;采用自锁及互锁装置、倒档平安装置,对接合齿采取倒锥齿侧或越程咬合、错位接合、齿厚减薄、台阶齿侧等措施,以及其它构造措施,可使操纵可靠,不跳档、乱档
6、、自行脱档和误挂倒档;采用同步器可使换档轻便、无冲击及噪声;采用高齿、修形及参数优化等措施可使齿轮传动平稳、噪声低。降低噪声水平已成为提高变速器质量和设计、工艺水平的关键。随着汽车技术的开展,增力式同步器,双及三中间轴变速器,后置常啮合传动齿轮、短第二轴的变速器,各种自动、半自动以及电子控制的自动换档机构等新构造也相继问世。变速器多采用飞溅润滑,重型汽车有时强制润滑第一、二轴等。变速器都装有单向的通气阀,以防壳空气热胀而漏油及润滑油氧化。壳底的放油塞多置磁铁,以吸附油中铁屑。涉水车需有防水措施。变速器的设计系列按输出转矩分级,供各种车型选用,也可根据具体车型的使用寿命要求进展设计。可根据同类型
7、在典型路段上实测的随机载荷,用统计分析法组成载荷谱,进展变速器的疲劳寿命计算。这种可靠性设计方法比拟符合实际,如果再以油画设计方法选择有关设计参数作最正确匹配,则可得到以最小零部件尺寸满足设计所要求的寿命和性能的设计方案。有时亦可辅以有限元分析。为保证变速器具有良好的工作性能,对变速器应提出如下的设计要求。(1) 正确地选择变速器的档位数和传动比,并使之与发动机参数及主减速比作优化匹配,以保证汽车具有良好的动力性与燃料经济性。(2) 设置空挡,以保证汽车在必要时能将发动机与传动系长时间别离;使汽车可以倒退行驶。(3) 体积小、质量小、承载能力强、使用寿命长、工作可靠。(4) 操纵简单、准确、轻
8、便、迅速。(5) 传动效率高、工作平稳、无噪声或低噪声。(6) 制造工艺性好、造价低廉、维修方便。(7) 贯彻零件标准化、部件通用化和变速器总成系列化等设计要求,遵守有关标准和法规。(8) 需要时应设置动力输出装置。1.2 国外开展趋势 回忆变速器技术的开展可以清楚的知道,变速器作为汽车传动系统的重要组成局部,其技术的开展,是衡量汽车技术水平的一项重要依据。21世纪能源与环境、先进制造技术、新型材料技术、信息与控制技术等是科学技术开展的重要领域,这些领域的科技进步推动了变速器技术的开展。变速器技术的开展动向如下:1节能与环境保护。表示且的节能与环境保护既包括传动系统本身的节能与环境保护,也包括
9、发动机本身的节能与环境保护。因此研究高效率的传动副来节约能源,采用零污染的工作介质或润滑油来防止环境污染,根据发动机的特性和形式工况来设计变速器,提高传动效率和最低污染物排放区运行等措施。2应用新型材料。材料科学与技术是21世纪重点开展的科学技术领域。各种新型材料在变速器中的应用已经推动了汽车技术的开展和性能的提高。3高性能、低本钱、微型化。高性能、高效、精细、低噪声、长寿命、重量轻、体积小、低本钱一直以来是变速器的开展方向。2 变速器机构方案确实定2.1传动机构布置方案分析本设计应用在现今使用广泛的发动机前置、后轮驱动的42总体布置方案,发动机发出的动力依次经过离合器、变速器、万向传动装置万
10、向节和传动轴、主减速器、差速器、半轴,传到驱动轮,如图2.1所示1.离合器; 2.变速器; 3.万向传动装置; 4.驱动桥图2.1 发动机前置后轮驱动汽车传动系变速器由变速传动机构和操纵机构组成。根据前进档数的不同,变速器有三、四、五和多档几种。根据轴的不同类型,分为固定轴式和旋转轴式两大类。而前者又分为两轴式、三轴式和多中间轴式变速器。固定轴式变速器1两轴式变速器 固定轴式中的两轴式和中间轴式变速器应用广泛。其中两轴式变速器多用于发动机前置前轮驱动汽车上。与中间轴式变速器比拟,两轴式变速器因轴承数少,所以有构造简单、轮廓尺寸小和容易布置等优点,此外,各中间档位因只经一对齿轮传递动力,故传动效
11、率高同时噪声也低。因两轴式变速器不能设置直接档,所以在高档工作时齿轮和轴承均承载,不仅工作噪声增大,而且易损坏。还有,受构造限制,两轴式变速器的一档速比不可能设计得很大。对于前进档,两轴式变速器输入轴的转动方向与输出轴的转动方向相反;而中间轴式变速器的第一轴与输出轴的转动方向一样。本设计主要针对的是一吨级货车或旅行车,所以两轴式变速器不适用于本设计。2中间轴式变速器 中间轴式变速器多用于发动机前置后轮驱动汽车和发动机后置后轮驱动的客车上。变速器第一轴的前端经轴承支承在发动机飞轮上,第一轴上的花键用来装设离合器的从动盘,而第二轴的末端经花键与万向节连接。各传动方案的共同特点是:变速器的第一轴后端
12、与常啮合主动齿轮做成一体。绝大多数方案的第二轴前端经轴承支承在第一轴后端的孔,且保持两轴轴线在同一直线上,经啮合套将它们连接后可得到直接档。是直接档,变速器的齿轮和轴承及中间轴均不承载,发动机转矩经变速器第一轴和第二轴直接输出,此时变速器传动效率高,可达90%以上,噪声低、齿轮和轴承的磨损减少。因为直接档的利用率要高于其它档位,因而提高了变速器的使用寿命;在其它前进档位工作时,变速器传递的动力需要经过设置在第一轴、中间轴和第二轴上的两对齿轮传递,因此在变速器中间轴与第二轴之间的距离中心距不太大的条件下,一档仍然有较大的传动比;档位高的齿轮采用常啮合齿轮传动,档位低的齿轮一档可以采用或不采用常啮
13、合齿轮传动;多数传动方案中除一档外的其它档位换档机构,均采用同步器或啮合套换档,少数构造的一档也采用同步器或啮合齿套换档,还有各档同步器或啮合套多数情况下装在第二轴上。在除直接档以外的其它档位工作时,中间轴式变速器的传动效率略有降低,这是它的缺点。在档数一样的条件下,各中间轴式变速器主要在常啮合齿轮对数、轴的支承方式、换档方式和倒档传动方案以及档位布置顺序上有差异。由于本设计针对的是轻型汽车,中间轴式五档和六档变速器体积和质量显得过于庞大,而且传动比大不适用于本设计,因此,选用中间轴式三轴四档变速器设计方案。凡采用常啮合齿轮传动的档位,其换档方式可以用同步器或啮合套来实现。同一变速器中,有的档
14、位用同步器换档,有的档位用啮合套换档,则一定是档位高的用同步器换档,档位低的用啮合套换档。发动机前置后轮驱动的乘用车采用中间轴式变速器,为缩短传动轴长度,将第二轴加长,置于附加的壳体。如果在附加壳体布置倒档传动齿轮和换档机构,还能减小变速器主体局部的外形尺寸及提高中间轴和输出轴的刚度。因此,这种方案比拟适合本设计,但需要加以改良。倒档布置方案与前进档位比拟,倒档使用率不高,而且都是在停车状态下实现倒档,故屡次数方案均采用直齿滑动齿轮方式换倒档。为实现倒档传动,有些方案利用中间轴和第二轴上的齿轮传动路线中参加一个中间传动齿轮的方案;也有利用两个联体齿轮方案的。前者虽然构造简单,但是中间传动齿轮的
15、轮齿是在最不利的正、负交替变化的弯曲应力状态下工作;而后者是在较为有利的单向循环弯曲应力状态下工作,并使倒档传动比略有增加。也有少数变速器采用构造复杂和使本钱增加的啮合套或同步器方案换入倒档。(d)图2.2 倒档布置方案(c)(b)(a)图2.2为常见的倒档布置方案。图2.2(a)所示方案的优点是换倒档时利用了中间轴上的一档齿轮,因而缩短了中间轴的长度;但换档时要求有两对齿轮同时进入啮合,使换档困难。图2.2(b)所示方案能获得较大的倒档传动比,缺点是换档程序不合理。图2.2(c)所示方案是将中间轴上的一、倒档齿轮做成一体,将其齿宽加长。图2.2(d)所示方案适用于全部齿轮副均为常啮合的齿轮,
16、换档更为轻便。综上所述,方案(c)较为适合本设计变速器的一档或倒档因传动比大,工作时在齿轮上作用的力增大,并导致变速器轴产生较大的挠度和转角,使工作齿轮啮合状态变坏,最终表现出齿轮磨损加快和工作噪声增加。为此,无论是两轴式变速器还是中间轴式变速器的一档与倒档,都应当布置在靠近轴的支承处,以便改善上述不良状况,然后按照从抵档到高档的顺序布置各档齿轮,这样做既能使轴有足够大的刚性,又能保证容易装配。倒档的传动比虽然与一档的传动比接近,但因为使用倒档的时间非常短,从这点出发有些方案将一档布置在靠近轴的支承处,然后再布置倒档。此时在倒档工作时,轮齿磨损与噪声在短时间略有增加,而在一档工作时轮齿的磨损与噪声有所减少。倒档