文档详情

江苏省常州市新北区2024学年八年级数学第一学期期末达标测试试题含解析

艳春1****84
实名认证
店铺
DOC
693KB
约23页
文档ID:352685829
江苏省常州市新北区2024学年八年级数学第一学期期末达标测试试题含解析_第1页
1/23

2024学年八年级上学期数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号回答非选择题时,将答案写在答题卡上,写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、选择题(每小题3分,共30分)1.计算:( )A. B. C. D.2.如图,的面积为12,,,的垂直平分线分别交,边于点,,若点为边的中点,点为线段上一动点,则周长的最小值为( )A.6 B.8 C.10 D.123.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为(  )A.13cm B.17cm C.13或17cm D.10cm4.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是(  )A.六边形 B.八边形 C.正六边形 D.正八边形5.长度分别为,,的三条线段能组成一个三角形,的值可以是( )A. B. C. D.6.下列运算错误的是( )A. B. C. D.7. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为41,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=41;②a-b=2;③2ab=45;④a+b=1.其中正确的结论是( )A.①②③ B.①②③④ C.①③ D.②④8.下列各数是有理数的是(  )A. B. C. D.π9.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是(  )A. B. C.2 D.10.下列运算中,正确的是(  )A.(x3)2=x5 B.(﹣x2)2=x6 C.x3•x2=x5 D.x8÷x4=x2二、填空题(每小题3分,共24分)11.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为_____.12.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为_____.13.点关于轴对称的点的坐标为______.14.如图,与是两个全等的等边三角形,.有下列四个结论:①;②;③直线垂直平分线段;④四边形是轴对称图形.其中正确的结论有_____.(把正确结论的序号填在横线上)15.A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.16.已知函数y=x+m-2019 (m是常数)是正比例函数,则m= ____________17.在等腰中,AB为腰,AD为中线,,,则的周长为________.18.人体血液中的血小板直径约为0.000002,数字0.000002用科学记数法表示为_____.三、解答题(共66分)19.(10分)某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克? 进价(元/千克)标价(元/千克)苹果38提子41020.(6分)在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.(1)求m,n的值;(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P段OF是(动点P与O,F不重合),动点Q段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.21.(6分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.22.(8分)如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,(1)求D、E两点的坐标.(2)求过D、E两点的直线函数表达式23.(8分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.24.(8分)解答下列各题(1)计算:(2)解方程组25.(10分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C段AB上移动时,线段AD与BE的数量关系是: .(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.26.(10分)计算下列各小题(1)(2)参考答案一、选择题(每小题3分,共30分)1、A【分析】先进行二次根式的乘除运算,然后合并即可.【详解】解:原式===故选A.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.2、B【分析】先根据中点的定义求出CD,然后可知的周长=PC+PD+CD,其中CD为定长,从而得出PC+PD最小时,的周长最小,连接AD交EF于点P,根据垂直平分线的性质可得此时PC+PD=PA+PD=AD,根据两点之间线段最短可得AD即为PC+PD的最小值,然后根据三线合一和三角形的面积公式即可求出AD,从而求出结论.【详解】解:∵,点为边的中点∴CD=∵的周长=PC+PD+CD,其中CD为定长∴PC+PD最小时,的周长最小连接AD交EF于点P,如下图所示∵EF垂直平分AC∴PA=PC∴此时PC+PD=PA+PD=AD,根据两点之间线段最短,AD即为PC+PD的最小值∵,点D为BC的中点∴AD⊥BC∴,即解得:AD=6∴此时的周长=PC+PD+CD= AD+CD=1即周长的最小值为1.故选B.【点睛】此题考查的是求三角形周长的最小值、垂直平分线的性质和等腰三角形的性质、掌握两点之间线段最短、垂直平分线的性质和三线合一是解决此题的关键.3、B【详解】由题意得:三角形的三边可能为3、3、7或3、7、7,然后根据三角形的三边关系可知只能是3、7、7,∴周长为3+7+7=17cm.故选B.4、D【解析】设出外角的度数,利用外角与相邻内角和为120°求得外角度数,360°÷这个外角度数的结果就是所求的多边形的边数.【详解】解:设正多边形的每个外角为x度,则每个内角为3x度,∴x+3x=120,解得x=1.∴多边形的边数为360°÷1°=2.故选D.【点睛】本题考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为120°;正多边形的边数等于360÷正多边形的一个外角度数,解题关键是熟练掌握多边形内角与外角之间的关系.5、C【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.4,5,1都不符合不等式5<x<1,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.6、C【分析】根据负整数指数幂,逐个计算,即可解答.【详解】A. ,正确,故本选项不符合题意;B. ,正确,故本选项不符合题意;C. ,错误,故本选项符合题意;D. ,正确,故本选项不符合题意;故选:C.【点睛】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.7、A【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4××ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.【详解】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方= a2+b2,由图知,大正方形的边长为直角三角形的斜边长,∴大正方形的面积=斜边的平方= a2+b2,即a2+b2=41,故①正确;根据题意得4个直角三角形的面积=4××ab=2ab,4个直角三角形的面积=S大正方形-S小正方形 =41-4=45,即2ab=45,故③正确;由①③可得a2+b2+2ab=41+45=14,即(a+b)2=14,∵a+b>0,∴a+b=,故④错误,由①③可得a2+b2-2ab=41-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A.【点睛】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键.8、A【分析】根据实数的分类即可求解.【详解】有理数为,无理数为,,π.故选:A.【点睛】此题主要考查实数的分类,解题的关键是熟知无理数的定义.9、B【分析】由直线解析式可知:该直线过定点(﹣1,0),画出图形,由图可知:在直线CD和直线CE之间,两侧格点相同,再根据E、D两点坐标求k的取值【详解】解:∵直线y=﹣k(x+1)过定点(﹣1,0),分布在直线y=﹣k(x+1)两侧的格点数相同,由正方形的对称性可知,直线y=﹣k(x+1)两侧的格点数相同,∴在直线CD和直线CE之间,两侧格点相同,(如图)∵E(﹣3,3),D(﹣3,4),∴﹣1<﹣k<﹣,则<k<1.故选B.【点睛】此题考查的是一次函数与图形问题,根据一次函数的图像与点的坐标的位置关系求k的取值是解决此题的关键.10、C【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案.【详解】A.(x3)2=x6,故此选项错误;B.(﹣x2)2=x4,故此选项错误;C.x3•x2=x5,正确;D.x8÷x4=x4,故此选项错误.故选:C.【点睛】此题考查积的乘方运算,同底数幂的乘除运算,正确掌握相关运算法则是解题关键.二、填空题(每小题3分,共24分)11、1【分析】首先根据题意可得MN是AB。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档