导热凝胶产业工作汇报

上传人:泓域M****机构 文档编号:349694968 上传时间:2023-04-20 格式:DOCX 页数:16 大小:24.75KB
返回 下载 相关 举报
导热凝胶产业工作汇报_第1页
第1页 / 共16页
导热凝胶产业工作汇报_第2页
第2页 / 共16页
导热凝胶产业工作汇报_第3页
第3页 / 共16页
导热凝胶产业工作汇报_第4页
第4页 / 共16页
导热凝胶产业工作汇报_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《导热凝胶产业工作汇报》由会员分享,可在线阅读,更多相关《导热凝胶产业工作汇报(16页珍藏版)》请在金锄头文库上搜索。

1、导热凝胶产业工作汇报加快制定完善信息消费统计监测制度,进一步明确统计范围。各地工业和信息化主管部门要按照全国统计监测目标、范围和口径,完善本地区统计监测工作机制,及时上报信息消费工作进展情况。建立健全信息消费评价机制,定期发布信息消费发展指数,指导和推动信息消费持续健康发展。一、 完善统计监测制度加快制定完善信息消费统计监测制度,进一步明确统计范围。各地工业和信息化主管部门要按照全国统计监测目标、范围和口径,完善本地区统计监测工作机制,及时上报信息消费工作进展情况。建立健全信息消费评价机制,定期发布信息消费发展指数,指导和推动信息消费持续健康发展。二、 通信设备行业的技术发展情况和未来发展趋势

2、(一)通信设备技术的整体发展历史:由分裂走向统一1、通信设备行业1G时代:各国各自研制自己的移动通信系统1973年,摩托罗拉研发出了世界第一台手机;1976年,ITU批准了800/900MHz频段用于移动电话的频率分配方案。1978年底,美国贝尔实验室研发成功了世界第一套移动通信系统AMPS(AdvancedMobilePhoneSystem)并于1983年开始正式商业运行,开启了1G时代;随着AMPS的面世,欧洲各国也纷纷建立齐了自己的第一代移动通信系统,包括北欧的NMT(NordicMobileTelephone)、前联邦德国的C-Netz和英国的TACS(TotalAccessCommu

3、nicationsSystem)等。作为最早面世的移动通信系统,AMPS受到了广泛的欢迎,在超过70个国家运行,是1G时代最广泛使用的通信技术标准。2、通信设备行业2G时代:欧洲各国开始联合,欧洲VS高通的通信标准格局形成1982年,为研发、设计一个可以泛欧洲使用的移动通信系统,欧洲邮电管理委员会设立了GSM(法语GroupeSpcialMobile,移动通信专家组,其标准化的职能后转移)。1986年,为与美国在通信领域竞争,建立一个更先进、更广泛使用的泛欧通信技术标准,欧洲委员会(EuropeanCommission)于1986年开始对美国通信行业的情况进行了考察,并于1987年第一次公布了

4、设立一个通信技术标准协会的设想。1987年,德国、比利时、丹麦、西班牙、芬兰、法国、爱尔兰、意大利、挪威、荷兰、葡萄牙、英国、瑞典共同签署了一份备忘录,同意在1991年前建立一个泛欧洲的、基于数字信号的通信系统,并委托GSM承担该任务。1988年,欧洲邮电管理委员会设立了ETSI(EuropeanTelecommunicationsStandardsInstitute,欧洲电信标准协会)。1989年,欧洲邮电管理委员会将GSM的职能转移给了ETSI,同年,新一代的泛欧洲通信系统标准被确定,即GSM(GlobalSystemforMobilecommunications)标准,欧洲的通信技术标准

5、得到了统一。在欧洲大力发展GSM标准的同时,美国的高通也在布局新一代的通信技术,与基于TDMA(时分多址)技术的GSM标准不同,高通采用CDMA(码分多址)技术建立了自己的通信技术标准IS-95,并于1993年被美国电信行业协会(TelecommunicationsIndustryAssociation)确立为2G标准,相关网络系统后续在中国香港、韩国等多个地区部署,在全球形成欧洲的GSM和高通的CDMA两大2G标准竞争的格局。3、通信设备行业3G时代:更多国家、组织积极参与通信技术标准的设立1985年,联合国下属的ITU(InternationalTelecommunicationUnion

6、,国际电信联盟)提出建立新的通信技术规范,即FPLMTS(FuturePublicLandMobileTelecommunicationsSystem,未来公共陆地移动通信系统)。由于GSM等2G网络的部署,ITU的该计划暂时搁置(FPLMTS后被改名为IMT-2000)。1987年,一项旨在研究一种在革命性的通信系统的研究在英国剑桥开展,研究员们将这项技术称作UMTS(UniversalMobileTelecommunicationsSystem),该研究得到了欧洲委员会和爱立信、诺基亚等厂商的资助。上世纪90年代初,越来越多的SDO(StandardsDevelopingOrganizat

7、ion,标准化组织)和通信厂商意识到全球通行的通信技术标准的意义,包括ESTI、日本的ARIB等标准化组织以及爱立信、诺基亚、三星都开始进行研究。为了能够采用单一标准,ITU要求每个地区的SDO和厂商提交能够满足IMT-2000性能要求的无线电传输技术的提案。1992年,UMTS的研究取得了阶段性成果,但参与UMTS研究的各方对UMTS的无线电传输部分选择ATDMA技术还是WCDMA技术存在争议。1996年,在欧洲委员会的促进下,爱立信、诺基亚等厂商,法国电信、Orange等运营商以及标准化组织ETSI共同建立了UMTS论坛,以推动UMTS的产业化发展。其后,日本加入了欧洲阵营,UMTS确定以

8、WCDMA技术作为无线电传输部分的技术。1996年-1998年间,各大SDO和相关厂商提交了17个提案,包括欧洲和日本SDO联合主张的WCDMA(UMTS),高通和三星为主的厂商联合主张CDMA2000和中国主张的TD-SCDMA。1998年,为支持UMTS成为世界标准,以ESTI为核心的组织、厂商建立了3GPP(3rdGenerationPartnershipProject,第三代合作计划);同年,支持CDMA2000的以高通为核心的厂商、组织建立了3GPP2、3GPP和3GPP2都宣称为ITU的IMT-2000项目服务。1999年,为推动TD-SCDMA的普及,中国的标准化组织CCSA同时

9、加入了3GPP和3GPP2。中国主张的TD-SCDMA后来成为UMTS的一部分,与WCDMA作为UMTS的两个不同版本。2000年,经ITU确认(ITU-RM1457Recommendation),WCDMA、CDMA2000和TD-SCDMA被确立为3G(IMT-2000)的标准。4、通信设备行业4G时代:高通放弃主导标准,IT厂商竞争失败,技术标准趋向统一在3G时代,为收回对UMTS研究的资助,欧洲各国采用了最大化频谱使用权拍卖价格的政策,使运营商背负了较大的投入成本,因此运营商在短期内无法承受再一次革命性的通信技术更新。在这种商业背景下,各大标准化组织和厂商对于通信技术的研究方向主要是在

10、现有体系下演进,3GPP和3GPP2两大组织分别在其原支持的UMTS、CDMA2000的基础上推出了LTE(LongTermEvolution)和UMB(UltraMobileBroadband)。在通信行业组织演进技术的同时,主要由IT厂商和工程师组成的IEEE(InstituteofElectricalandElectronicsEngineers,电机电子工程师协会)也升级了其负责制订的Wi-Fi技术标准;升级后的IEEE80216e及以后版本Wi-Fi技术标准可以支持移动互联网功能,开始与通信行业组织与厂商进行竞争。2008年,ITU定义了4G(IMTAdvanced)网络技术的性能指

11、标,要求相关SDO和厂商向ITU提交4G技术的提案。同年,高通宣布停止推广UMB,加入LTE阵营。2009年,3GPP和IEEE分别向ITU提交了LTEAdvanced和WiMAXrel20(IEEE80216m)作为4G(IMTAdvanced)技术标准的提案。2011年,经ITU批准,LTEAdvanced和IEEE80216m都被确认为4G的技术标准。2012年,IEEE公布了WiMAXrel21,由于WiMAXrel21不兼容以前的版本,众多运营商和厂商转向LTEAdvanced,LTEAdvanced成为唯一主流的4G通信技术标准。5、通信设备行业5G时代:第一次尝试全球统一标准,标

12、准分批冻结以往通信技术标准的不统一为各大软硬件厂商、运营商都带来了很大的不便,因此在5G时代统一全球标准成为了通信行业绝大部分参与者的共识。经过3G、4G时代标准制定工作的发展,由ITU发布定义和指标需求,由各大SDO和厂商进行研究,再在3GPP框架内进行讨论、谈判、确认,最后由3GPP向ITU进行提案成为了通信行业普遍认可的确认通信技术标准的方式。2015年,ITU公布的ITU-RM2083文件定义了5G(IMT-2020)技术的应用场景和技术指标,根据ITU的定义,5G的三大典型应用场景包括:eMBB(EnhancedMobileBroadband,增强型移动宽带),主要应用场景包括3D/

13、超高清视频、VR/AR、云存取、高速移动上网等需要大流量移动宽带的场景;URLLC(UltraReliable&LowLatencyCommunication,高可靠低时延通信),主要应用场景包括无人驾驶/智能驾驶、工业互联网等要求极低时延和高可靠性的场景;mMTC(MassiveMachineTypeCommunication,大规模机器通信),主要场景包括车联网、智能物流、智能资产管理等需要大规模数据连接的场景。根据3GPP的规划,5G标准分为R15、R16和R17,目前R15、R16标准已经冻结。R15版本标准已经能够初步支持ITU定义的5G应用场景中eMBB和URLLC两大场景,因此R

14、15的冻结意味着面向5G规模商用的网络设备、芯片、手机以及各种多样化的智能硬件可以开始生产,部分运营商已经可以开始5G网络的部署和运营;R16的冻结标志着5G网络具备真正的系统级低时延高可靠性能力,并实现了网络切片应用背景下的4G5G互操作问题,以满足智慧车联网、工业互联网等行业应用。根据3GPP的时间表,R17版本标准预计于2022年6月冻结。(二)5G基站设备的变化:覆盖范围更小、集成程度更高、发热/能耗更大1、因频段原因,相同情况下5G基站的覆盖范围更小在相同情况下,无线电波的波长越长(频率越低),其传播距离越远。基于历史原因,各国低频段的频谱资源大部分分配给力其他网络(2G网络主要运行

15、在09Ghz附近,3G网络主要运行在18Ghz附近,4G网络主要运行在23-26Ghz附近)和其他无线电波服务(比如广播电视),考虑到频谱资源的限制,大部分5G网络运行在比以往网络更高的频段上,因此在相同条线下,5G基站的覆盖范围一般较4G网络更小。除以上因素外,因现实中不存在理想的传播条件,基站的覆盖范围还要考虑到各种损耗。由于无线电波自身的性质,5G高频信号的传输,尤其是毫米波段的5G信号会受到空气中的氧气、水蒸气等分子的明显影响,包括对无线电波能量的吸收、使无线电波散射等,越高频率的无线电波受到的影响越大。除了在空气中传播受到影响以外,越高频率的无线电波在穿透物体时的衰减也越大,以穿过建

16、筑外墙为例,频率越高的无线电波受到的衰减影响越大。2、为增强覆盖、提升网络性能,5G基站大量使用MIMO技术为增大5G网络的覆盖面积,实现5G技术标准所要求的性能,5G基站设备将大量使用MIMO(MultiInputMultioutput,多进多出)技术。MIMO技术是4G时代发展出的一种关键技术,其基本原理是在发送端和接收端部署多根天线,通过多根天线配合提供分集增益和赋形增益,以提升网速和覆盖率面积。分集增益是指通过多天线同时收发信号,在单位时间内传输更多的数据,提高数据的接收成功率。赋形增益是指利用波的干涉原理,增强部分波束,从而增强波束的传播能力。在3G,4G时代,基站设备主要由BBU(BuildingBasebandUnit,负责基带信号调制)、RRU(RemoteRadioUnit,负责数字信号和模拟信号转换以及模拟信号的处理)和天线(负责收发承载模拟信号的无线电波)组成,其中RRU以往通过馈线和天线进行连接。由于5G的基站天线

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 经营企划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号