以太网物理层芯片产业调研分析

上传人:陈雪****2 文档编号:349255082 上传时间:2023-04-14 格式:DOCX 页数:26 大小:31.76KB
返回 下载 相关 举报
以太网物理层芯片产业调研分析_第1页
第1页 / 共26页
以太网物理层芯片产业调研分析_第2页
第2页 / 共26页
以太网物理层芯片产业调研分析_第3页
第3页 / 共26页
以太网物理层芯片产业调研分析_第4页
第4页 / 共26页
以太网物理层芯片产业调研分析_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《以太网物理层芯片产业调研分析》由会员分享,可在线阅读,更多相关《以太网物理层芯片产业调研分析(26页珍藏版)》请在金锄头文库上搜索。

1、以太网物理层芯片产业调研分析加快推进教育放管服改革,注重发挥市场机制配置非基本公共教育资源作用,强化就业市场对人才供给的有效调节。进一步完善高校毕业生就业质量年度报告发布制度,注重发挥行业组织人才需求预测、用人单位职业能力评价作用,把市场供求比例、就业质量作为学校设置调整学科专业、确定培养规模的重要依据。新增研究生招生计划向承担国家重大战略任务、积极推行校企协同育人的高校和学科倾斜。严格实行专业预警和退出机制,引导学校对设置雷同、就业连续不达标专业,及时调减或停止招生。坚持职业教育校企合作、工学结合的办学制度,推进职业学校和企业联盟、与行业联合、同园区联结。大力发展校企双制、工学一体的技工教育

2、。深化全日制职业学校办学体制改革,在技术性、实践性较强的专业,全面推行现代学徒制和企业新型学徒制,推动学校招生与企业招工相衔接,校企育人双重主体,学生学徒双重身份,学校、企业和学生三方权利义务关系明晰。实践性教学课时不少于总课时的50%。一、 集成电路设计行业概况由于发展历史的原因,大型的集成电路供应商采用IDM的经营模式,可以使设计、制造、封测各环节协同优化的同时获取各环节的商业价值,而中小型的芯片供应商出于资金实力、订单数量、比较优势等方面的考虑,往往选择Fabless的经营模式以专注集成电路设计环节。目前,集成电路设计行业一般指代由采用Fabless模式的集成电路企业所组成的产业。(一)

3、集成电路设计的重要性集成电路产品是信息产业的基础,直接关乎社会的稳定与国家的安全。集成电路设计产业属于集成电路产业的核心环节之一,是国家各项集成电路相关政策和发展战略规划重点领域。着力发展集成电路设计业,围绕重点领域产业链,强化集成电路设计、软件开发、系统集成、内容与服务协同创新,以设计业的快速增长带动制造业的发展,是实现我国集成电路芯片安全、自主、可控的重要途径。集成电路设计主要根据终端市场的需求设计开发各类集成电路芯片产品,其在很大程度上决定了终端芯片的功能、性能、成本和复用性等属性。随着集成电路行业的迅速发展,在摩尔定律的推动下,集成电路产品的加工面积成倍缩小,复杂程度与日俱增,集成电路

4、设计的重要性愈发突出。(二)全球集成电路设计产业简介近年来随着全球集成电路行业整体景气度的提升,集成电路设计市场也呈增长趋势。根据WSTS统计,全球集成电路设计产业销售额,即全球Fabless芯片和服务的销售收入,从2008年的438亿美元增长至2021年的1,655亿美元。从全球地域分布分析,集成电路设计市场供应集中度非常高。根据ICInsights的报告显示,2020年总部在美国集成电路设计产业销售额占全球集成电路设计业的64%,排名全球第一;总部在中国台湾、中国大陆的集成电路设计企业的销售额占比分别为18%和15%,分列二、三位。与2010年时中国大陆本土的集成电路设计企业的销售额仅占全

5、球的5%的情况相比,中国大陆的集成电路设计产业已取得较大进步,并正在逐步发展壮大。(三)中国集成电路设计产业简介我国的集成电路设计产业发展起点较低,但依靠着巨大的市场需求和良好的产业政策环境等有利因素,已成为全球集成电路设计产业的新生力量。从产业规模来看,我国大陆集成电路设计行业(包括在中国大陆经营的本土和外资企业)销售规模从2013年的809亿元增长至2021年的4,148亿元。从产业链分工角度分析,随着集成电路产业的不断发展,芯片设计、制造和封测三个产业链中游环节的结构也在不断变化。2015年以前,芯片封测环节一直是产业链中规模占比最高的子行业,从2016年起,我国集成电路芯片设计环节规模

6、占比超过芯片封测环节,成为三大环节中占比最高的子行业。中国集成电路起步较晚,错失了早期IDM模式发展的黄金阶段,因此对于中国集成电路设计企业而言,采用资产较轻、成本较低的Fabless模式更有利于集中比较优势从而实现弯道超车。目前,我国重点培育和发展的新一代信息技术产业都需要以集成电路作为支撑和基础,为集成电路设计行业创造了良好的战略机遇。二、 集成电路行业概况(一)集成电路简介集成电路是指采用一定工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的一种微型电子器件或部件,封装完成的集成电路亦被简称

7、为芯片。自1958年全球第一块集成电路研制成功至今,随着技术的飞速发展和应用领域不断扩大,集成电路已成为电子信息产业的基础支撑,其产品被广泛地应用于电子通信、计算机、网络技术、物联网等产业,是绝大多数电子设备的核心组成部分。21世纪被称为信息化时代,人类活动与信息系统息息相关,而集成电路作为信息系统的核心在很大程度上决定了信息安全的发展进程,因此世界各国政府都将其视为国家的核心骨干产业,集成电路产业的发展水平已逐渐成为了国家综合实力的象征之一。(二)集成电路产业链集成电路产业链由上游的EDA工具、半导体IP、材料和设备,中游的集成电路设计、晶圆制造、封装测试以及下游的系统厂商组成。集成电路设计

8、环节是根据芯片规格要求,通过架构设计、电路设计和物理设计,最终形成设计版图。其上游为EDA等工具供应商和半导体IP供应商,分别提供芯片设计所需的自动化软件工具和搭建系统级芯片所需的功能模块。晶圆制造环节是将设计版图制成光罩,将光罩上的电路图形信息蚀刻至硅片上,在晶圆上形成电路的过程。芯片封装环节是将晶圆切割、焊线、封装,使芯片电路与外部器件实现电气连接,并为芯片提供机械物理保护的工艺过程。芯片测试环节是对封装完毕的芯片进行功能和性能测试,测试合格后,芯片成品即可使用。其上游为原材料和设备供应商,主要提供所需的核心生产资料。其中,集成电路设计产业是典型的技术密集型行业,是集成电路产业各环节中对科

9、研水平、研发实力要求较高的部分。芯片设计水平对芯片产品的功能、性能和成本影响较大,因此芯片设计的能力是一个国家或地区在芯片领域能力、地位的集中体现之一。集成电路产业链的下游为系统厂商。三、 集成电路行业发展情况与未来发展趋势根据以太网联盟数据,基于铜介质的以太网技术从诞生至今历经了十兆以太网、百兆以太网、千兆以太网到万兆以太网的技术历程,目前规模应用的主流技术是8023ab标准的千兆以太网。但随着无线网络应用设备的大量集中部署,以及实际接入速率已经可以达到13Gbps的IEEE80211ac无线终端的商用,千兆以太网传输将逐步向更高速率更迭。虽然升级到万兆以太网可以提供更高的网络带宽及传输速率

10、,但是万兆网络端口需要配套Cat6/6a或以上线缆,在网络布线上会存在诸多不便,为响应市场对高速网络数据传输的发展需求,2016年IEEE协会正式发布了包含了25G/5G的两种传输速率规格的IEEE8023bz标准。IEEE8023bz标准明确定义了25G/5G以太网介质的访问控制(MAC)参数、物理层规范和管理通过25G/5G以太网传输的网络对象等内容。基于IEEE8023bz标准的25G/5G以太网技术具备多方面优势特点,是目前基于双绞线的以太网技术重点发展方向之一。目前汽车总线技术以CAN总线为主,LIN总线为辅,CAN总线具有多主仲裁的特点,但是它在每个时间窗口里只能一个节点赢得控制权

11、发送信息,其他节点都要变为接收节点,因此CAN总线只能实现半双工通讯,最高传输速度1Mbps(40m)。随着以新能源汽车为代表的当代汽车以电动化、网联化、智能化、共享化为发展趋势,继续使用CAN总线连接不仅将造成汽车电子系统成本大增,更无法满足高性能处理器实时高速双向数据交互的需求。车载以太网使用单对非屏蔽电缆以及更小型紧凑的连接器,使用非屏蔽双绞线时可支持15m的传输距离(对于屏蔽双绞线可支持40m),同时车载以太网可通过使用回声抵消在单线对上实现双向通信,满足智能化时代对高带宽的需求。车载以太网是在普通以太网的基础上,针对车内通信技术需求研发的一种用以太网连接车内电子单元的新型局域网技术。

12、随着汽车智能化发展,车载以太网技术有望率先应用于智能驾驶及智能座舱,并在未来实现对整车现有车内通信技术的逐步替代,是近年以太网技术发展的重要方向之一。车载以太网的物理层基于博通的BroadRReach技术并由OPEN联盟进行标准化。IEEE协会在此基础上发布了以下车载以太网标准。标准的以太网具有开放性好、互操作性好的技术优势,但调度方式导致网络性能往往不能满足确定性和实时性的要求。近年来,时间敏感网络(TSN)技术作为新一代以太网技术,因其符合标准的以太网架构,具有精准的流量调度能力,可以保证多种业务流量的共网高质量传输,兼具技术和成本优势,得以在音视频传输、工业、移动承载、车载网络等多个领域

13、成为下一代网络承载技术的重要演进方向之一。时间敏感网络主要在时间同步、流量调度以及互操作三个方面对以太网技术协议进行了优化升级,包括利用gPTP技术提升时间同步机制的性能,利用时间分片、抢占、流过滤等技术扩展流量调度手段,以及利用路径控制、冗余设备以及YANG模型等技术增强网络的互操作功能。目前标准的制定主要集中在基于标准以太网的基础共性标准以及结合应用场景的技术细化和升级两个方面。时间敏感网络旨在为以太网协议建立通用的时间敏感机制,以确保网络数据传输的时间确定性,同时利用数据整形,确保无论发生链路故障、电缆断裂以及其他错误,均能强制实现可靠的通讯,确保关键流量的复本在网络中能以不相交集的路径

14、进行传送,只保留首先到达目的地的任何封包,从而实现无缝冗余,达到超高的可靠性。当前,世界各国正在经历着传统经济向数字经济的转型,数字经济的全面爆发使得网络传输芯片的重要性日益凸显,以太网通信已成为当前经济和社会发展中不可或缺的战略性基础设施。2019年,工信部正式发放5G商用牌照,标志着中国正式进入5G商用元年,运营商开始在一二线城市大规模部署5G基站,并带来了以智能手机为主的移动终端产品的更新。根据工信部公开数据,截至2020年底,我国已建设超70万个5G基站,5G终端连接数已超18亿。同时,2021年全国工业和信息化工作会议和三大运营商2021年工作会议在北京召开,宣布2021年我国将新建

15、5G基站60万个以上,较2020年继续提速。5G商用正式启动,5G网络建设开始驶入快车道。随着5G网络的建设以及未来5G网络的全面普及,对于适用于5G承载网络的以太网芯片的市场需求也将快速提升。2019年,WIFI6无线局域网标准发布,带来路由器的更新需求。WIFI6是第六代无线接入技术,适用于个人室内无线终端上网,具有传输速率高、系统简单、成本低等优点,目前WIFI6的单流带宽已经达到1201Mbps,最大带宽支持96Gbps,速度可以达到目前通用的Wi-Fi5的27倍,未来的应用领域广泛。IDC数据指出,WIFI6在2019年第三季度开始从一些主流厂商陆续登场,WIFI6路由器的产值预计将

16、保持114%的复合增长率,并在2023年达到522亿美元。无线终端的速率提升除了要求无线接入点(AP)、接入控制器(AC)等无线设备支持更高的速率和性能,同时也要求以以太网为主干的骨干网络的汇聚和核心层设备提供充足的带宽资源。5G及WIFI6等无线通讯技术的发展意味着汇聚层设备必须提供高密度的高速接口,来汇集接入设备的流量,将在极大程度上推动以太网技术的发展和更新。近年来物联网和人工智能的迅速发展一方面催生出大量物联网设备的网络接入需求,用户对企业、服务提供商和家庭网络的传输数据量呈几何倍增长,另一方面由于机器学习需要海量的数据资源素材作为基础,高清摄像头、语音采集等终端设备联网增多带来数据量不断上升,图像视频处理、模式识别和计算机视觉等领域的数据传输量巨大,均急需快速、高效、可靠、稳定的网络传输作为基础。根据IDC预测,全球AloT市场规模将从2019年的约2,260亿美元上升至2022年的约4,820亿美元,年平均增长率

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号