功率器件行业工业和智能电网发展情况

举报
资源描述
功率器件行业工业和智能电网发展情况 一、 功率器件行业工业和智能电网发展情况 工业领域是功率器件另一大需求市场。工业领域中,数控机床、牵引机等电机对功率器件需求较大,主要使用的功率器件是IGBT。随着工业4.0不断推进,工业的生产制造、仓储、物流等流程改造对电机需求不断扩大,工业功率器件需求增加。太阳能、风能等新能源发电过程中产生的电能,需要经过IGBT、MOSFET等功率器件的变换,之后才能入网传输。功率器件作为智能电网的核心部件,可以增强电网的灵活性与可靠性,使得智能电网实现电力高效节能的传输。未来新能源市场的快速发展和智能电网建设的推进将催生出对功率器件需求的稳步增长。 二、 半导体材料为芯片之基,覆盖工艺全流程 半导体材料包括晶圆制造材料和封装材料。其中晶圆制造材料包括硅片、掩模版、电子气体、光刻胶、CMP抛光材料、湿电子化学品、靶材等,封装材料包括封装基板、引线框架、键合丝、包封材料、陶瓷基板、芯片粘结材料和其他封装材料。具体来说,在芯片制造过程中,硅晶圆环节会用到硅片;清洗环节会用到高纯特气和高纯试剂;沉积环节会用到靶材;涂胶环节会用到光刻胶;曝光环节会用到掩模板;显影、刻蚀、去胶环节均会用到高纯试剂,刻蚀环节还会用到高纯特气;薄膜生长环节会用到前驱体和靶材;研磨抛光环节会用到抛光液和抛光垫。在芯片封装过程中,贴片环节会用到封装基板和引线框架;引线键合环节会用到键合丝;模塑环节会用到硅微粉和塑封料;电镀环节会用到锡球。 三、 CMP:半导体平坦化核心技术,国内龙头放量在即 CMP,又名化学机械抛光,是半导体硅片表面加工的关键技术之一。CMP是半导体先进制程中的关键技术,伴随制程节点的不断突破,CMP已成为0.35μm及以下制程不可或缺的平坦化工艺,关乎着后续工艺良率。CMP采用机械摩擦和化学腐蚀相结合的工艺,与普通的机械抛光相比,具有加工成本低、方法简单、良率高、可同时兼顾全局和局部平坦化等特点。其中化学腐蚀的主要耗材为抛光液,机械摩擦的主要耗材为抛光垫,两者共同决定了CMP工艺的性能及良率。 (一)CMP系统复杂,抛光液和抛光垫为核心 CMP系统主要耗材可分为抛光液和抛光垫,分别占据抛光材料成本的49%和33%。其他抛光材料还包括抛光头、研磨盘、检测设备、清洗设备等。抛光液是一种由去离子水、磨料、PH值调节剂、氧化剂以及分散剂等添加剂组成的水溶性试剂。在抛光的过程中,抛光液中的氧化剂等成分与硅片表面材料产生化学反应,在表面产生一层化学反应薄膜,后由抛光液中的磨粒在压力和摩擦的作用下将其去除,最终实现抛光。抛光液可根据应用工艺环节、配方中磨粒、PH值的不同进行分类。 根据配方中磨粒的不同,可分为二氧化硅、氧化铈、氧化铝磨粒等三大类。二氧化硅磨粒活性强、易于清洗且分散性及选择性好,多用于硅、SiO2层间介电层的抛光。缺点是硬度大,容易对硅片表面造成损伤,且抛光效率较低。氧化铝磨粒抛光效率高,但硬度强、选择性低且团聚严重,因此抛光液中常需加入各类稳定剂和分散剂,导致成本相对较高。氧化铈磨粒硬度低,抛光效率高,平坦度高,清洁无污染,但团聚严重,也需加入各类稳定剂和分散剂,且铈属于稀有金属,成本较高。 根据PH值的不同,可分为酸性抛光液和碱性抛光液。酸性抛光液具有抛光效率高、可溶性强等优点,多用于对铜、钨、铝、钛等金属材料进行抛光。其缺点是腐蚀性较大,对抛光设备要求高,所以常选择向抛光液中添加抗蚀剂(BTA)提高选择性,但BTA的添加容易降低抛光液的稳定性。不同于酸性抛光液,碱性抛光液具有腐蚀性小、选择性高等优点,多数用于抛光硅、氧化物及光阻材料等非金属材料。碱性抛光液的缺点也较为明显,因为不容易找到在弱碱性中氧化势高的氧化剂,所以抛光效率较低。 抛光垫是负责输送和容纳抛光液的关键部件。在抛光的过程中,抛光垫具有把抛光液有效均匀地输送到抛光垫的不同区域、清除抛光后的反应物、碎屑等、维持抛光垫表面的抛光液薄膜,以便化学反应充分进行、保持抛光过程的平稳、和晶圆片表面不变形等功能。 (二)工艺制程持续升级,CMP市场稳定增长 半导体行业高景气带动CMP市场稳定增长。伴随半导体材料行业景气度向上,CMP材料市场有望受下游市场驱动,保持稳健增速。2020年全球抛光液和抛光垫全球市场规模分别为13.4和8.2亿美元。中国CMP材料市场涨幅趋势与国际一致,2021年抛光液和抛光垫市场规模分别为22和13亿元。中国正全面发展半导体材料产业,CMP抛光产业未来增长空间广阔。 先进制程为CMP材料市场扩容提供动力。随着芯片制程不断微型化,IC芯片互联结构变得更加复杂,所需抛光次数和抛光材料的种类也逐渐变多。在芯片制造过程中,需要将电路以堆叠的方式组合起来,制程越精细,所堆叠的层数就越多。在堆叠的过程中,需要使用到氧化层、介质层、阻挡层、互连层等多个薄膜层交错排列,且每个薄膜层所用到的抛光材料也不相同。此外,随着D存储芯片结构逐渐由2D转向3D,CMP抛光层数和所用到的抛光材料种类也在不断增加。根据美国陶氏杜邦公司公开数据,5nm制程中抛光次数将达25-34次,64层3DD芯片中的抛光次数将达到17-32次,抛光次数均较前一代制程大幅增加。伴随制程工艺的发展,CMP材料市场有望不断扩容,成长空间较大。 定制化抛光材料为未来发展趋势。定制化发展有望给国产企业带来更多机遇,国内CMP抛光材料企业可以凭借本土化优势与国内晶圆制造商展开深度合作,专注于具有专用性产品的研发。专用化、定制化有望成为CMP材料制造商产业升级趋势。 (三)CMP壁垒较高,产品配方具备较强 为匹配晶圆加工制程,CMP技术平整度要求高。CMP抛光材料的技术更新动力源自下游晶圆的技术更新。晶圆制程工艺不断提升,从10nm到现在5nm、3nm,工艺制程迭代速度极快。为了满足精细化程度更高的工艺制程,对CMP材料的要求也随之变高。当前IC芯片要求全局平整落差100A°-1000A°(约等于原子级10-100nm)的超高平整度。 配方的调配为一大技术难点。由于CMP抛光液应用众多,不同的客户有不同的需求,专用性较强,且需要加入氧化剂、络合剂、表面活性剂、缓蚀剂等多种添加试剂,如何调配出合适的抛光液配方需要企业长时间的技术积累和不断的研发尝试。目前许多配方受到专利保护,行业研发壁垒高。试错成本高、认证时间长。企业需要不断找到合适配方、稳定制作工艺及设计图案,从而获得较好的、稳定的抛光速率和抛光效果,因此CMP材料的研究消耗时间成本较高,需要较长时间来试错摸索工艺指标、产品配方等对物理参数及性能的影响,形成较高的行业know-how壁垒。 (四)竞争格局高度集中,国内厂商加速追赶 CMP抛光液市场,美国Carbot是国际龙头,安集科技为国内龙头。目前全球抛光液市场主要由美日厂商垄断,美国Cabot、美国Versum、日本日立、日本Fujimi和美国陶氏杜邦五家美日厂商占据全球抛光液近八成的市场份额,安集科技仅占约3%。国内市场中,美国Cabot占约64%,安集科技市占率为22%。 全球抛光垫市场一家独大,稳步前进。当前全球抛光垫市场主要由美国的陶氏杜邦垄断,市占率高达79%,其他公司如美国Cabot、日本Fujimi、日本Hitachi等市占率在5%以内。内资企业中,鼎龙股份、江丰电子和万华化学具备相应的生产力。其中,鼎龙股份为国内抛光垫龙头企业,生产的抛光垫意在对标美国陶氏杜邦集团。随着国内晶圆厂扩张,需求提升,为确保供应链的稳定,内资企业迎来发展潮。 四、 半导体材料景气持续,市场空间广阔 半导体是指常温下导电性能介于导体与绝缘体之间的材料。无论从科技或经济发展的角度来看,半导体都至关重要。2010年以来,全球半导体行业从PC时代进入智能手机时代,成为全球创新最为活跃的领域,广泛应用于计算机、消费类电子、网络通信和汽车电子等核心领域。半导体产业主要由集成电路、光电子、分立器件和传感器组成,据WSTS世界半导体贸易统计组织预测,到2022年全球集成电路占比84.22%,光电子器件、分立器件、传感器占比分别为7.41%、5.10%和3.26%。 半导体工艺复杂,技术壁垒极高。芯片生产大体可分为硅片制造、芯片制造和封装测试三个流程。其中硅片制造包括提纯、拉单晶、磨外圆、切片、倒角、磨削、CMP、外延生长等工艺,芯片制造包括清洗、沉积、氧化、光刻、刻蚀、掺杂、CMP、金属化等工艺,封装测试包括减薄、切割、贴片、引线键合、模塑、电镀、切筋成型、终测等工艺。整体而言,硅片制造和芯片制造两个环节技术壁垒极高。 目前多晶硅厂商多采用三氯氢硅改良西门子法进行多晶硅生产。具体工艺是将氯化氢和工业硅粉在沸腾炉内合成三氯氢硅,通过精馏进一步提纯高纯三氯氢硅,后在1100℃左右用高纯氢还原高纯三氯氢硅,生成多晶硅沉积在硅芯上,进而得到电子级多晶硅。目前8寸和12寸硅片大多通过直拉法制备,部分6寸和8寸硅片则通过区熔法制得。直拉法是将高纯多晶硅放入石英坩埚内,通过外围的石墨加热器加热至1400℃,随后坩埚带着多晶硅融化物旋转,将一颗籽晶浸入其中后,由控制棒带着籽晶作反方向旋转,同时慢慢地、垂直地由硅融化物中向上拉出,并在拉出后和冷却后生长成了与籽晶内部晶格方向相同的单晶硅棒。区熔法利用高频线圈在多晶硅棒靠近籽晶一端形成熔化区,移动硅棒或线圈使熔化区超晶体生长方向不断移动,向下拉出得到单晶硅棒。单晶硅棒研磨成相同直径,然后根据客户要求的电阻率,多采用线切割将晶棒切成约1mm厚的晶圆薄片。 五、 湿电子化学品:半导体制造材料关键一环 湿电子化学品贯穿整个芯片制造流程,是重要的晶圆制造材料。湿电子化学品又称工艺化学品,是指主体成分纯度大于99.99%,杂质离子和微粒数符合严格标准的化学试剂。在IC芯片制造中,湿电子化学品常用于清洗、光刻和蚀刻等工艺,可有效清除晶圆表面残留污染物、减少金属杂质含量,为下游产品质量提供保障。在半导体制造工艺中主要用于集成电路前端的晶圆制造及后端的封装测试,用量较少,但产品纯度要求高、价值量大。 (一)湿电子化学品种类众多,硫酸和双氧水占比较高 根据应用领域的不同,湿电子化学品可分为通用化学品和功能性化学品。其中通用化学品指主体成分纯度大于99.99%、杂质离子含量低于PPM级和尘埃颗粒粒径在0.5μm以下的单一高纯试剂。功能湿电子化学品指可通过复配满足制造中特殊工艺需求、达到某些特定功能的配方类和复配类液体化学品。其中通用化学品广泛应用于IC芯片、液晶显示面板和LED制造领域,包括氢氟酸、硫酸、磷酸、盐酸、硝酸、乙酸等。功能性湿电子以光刻胶配套试剂为代表,包括显影液、漂洗液、剥离液等。 (二)全球市场空间超50亿美元,国内增速更快 受益于三大下游市场扩容,湿电子化学品需求量有望实现稳定增速。近年来,半导体、显示面板、光伏三大板块下游市场规模不断扩大,产业迎来高速发展,带动湿电子化学品市场规模平稳增长。据智研咨询数据,2020年全球湿电子化学品市场规模为50.84亿美元,受疫情影响略有下滑。国内湿电子化学品市场规模于2020年达到100.6亿元,同比增长9.2%。 中低端领域国产转化率较高,产业升级主要面向G4-G5级产品。国际半导体设备和材料组织(SEMI)于1975年制定了国际统一的湿电子化学品杂质含量标准。该标准下,产品级别越高,所对应的集成电路加工工艺精细度程度越高,制程越先进。半导体领域对湿电子化学品的纯度要求较高,集中在G3、G4级水平,且晶圆尺寸越大对纯度的要求越高,12英寸晶圆制造一般要求G4级以上水平。目前国外主流湿电子化学品企业已实现G5级标准化产品的量产。国内市场半导体领域的湿电子化学品,G2、G3级中低端产品进口转化率高,因为此技术范围内国产产品本土化生产、性价比高、供应稳定等优势较为突出。G4、G5级高端产品仍有较大进口替代空间,为未来主要升级方向。 (三)纯化和复配为湿电子化学品核心,半导体要求最高 集成电路对超净高纯试剂纯度的要求非常高。按照SEMI等级的分类,G1级属于低档产品
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关资源
正为您匹配相似的精品文档
相关搜索

当前位置:首页 > 办公文档 > 解决方案


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号