文档详情

河北省景县2023学年九年级数学第一学期期末达标检测试题含解析

l****6
实名认证
店铺
DOC
851.50KB
约16页
文档ID:346823014

2023学年九年级上学期数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每题4分,共48分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.如图,函数y1=x﹣1和函数的图象相交于点M(2,m),N(﹣1,n),若y1>y2,则x的取值范围是(  )A.x<﹣1或0<x<2 B.x<﹣1或x>2C.﹣1<x<0或0<x<2 D.﹣1<x<0或x>23.如图,,,,四点都在上,,则的度数为( )A. B. C. D.4.如图所示几何体的主视图是( )A. B. C. D.5.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为( )A. B. C. D.6.直径为1个单位长度的圆上有一点A与数轴上表示1的点重合,圆沿着数轴向左滚动一周,点A与数轴上的点B重合,则B表示的实数是( )A. B. C. D.7.化简的结果是( )A. B. C. D.8.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为A. B.5 C.4 D.39.(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有(  )A、1个 B、2个C、3个 D、4个10.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( )A. B.2π C.3π D.12π11.下列图标中,是中心对称图形的是( )A. B. C. D.12.菱形具有而矩形不具有的性质是( )A.对角相等 B.四个角相等 C.对角线相等 D.四条边相等二、填空题(每题4分,共24分)13.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.14.如图,已知菱形ABCD的对角线AC、BD交于点O,,,则菱形ABCD的面积是________.15.点关于原点的对称点的坐标为________.16.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角为__________.17.如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′ 的度数是______________.18.如图,一艘轮船从位于灯塔的北偏东60°方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45°方向上的处,这时轮船与小岛的距离是__________海里.三、解答题(共78分)19.(8分)如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=4时,求的值.20.(8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕表示)21.(8分)如图,二次函数y=﹣x2+x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.22.(10分)《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右.在其“勾股”章中有这样一个问题:“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD.EG=15里,HG经过点A,则FH等于多少里?请你根据上述题意,求出FH的长度.23.(10分)解方程:x2﹣4x﹣5=1.24.(10分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.25.(12分)如图,一次函数的图象与反比例函数图象交于A(-2,1),B(1,n)两点.(1)求m,n的值; (2)当一次函数的值大于反比例函数的值时,请写出自变量x的取值范围.26.已知菱形的两条对角线长度之和为40厘米,面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x取何值时,菱形的面积最大,最大面积是多少?参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误; C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.2、D【解析】析:根据反比例函数的自变量取值范围,y1与y1图象的交点横坐标,可确定y1>y1时,x的取值范围.解答:解:∵函数y1=x-1和函数y1=的图象相交于点M(1,m),N(-1,n),∴当y1>y1时,那么直线在双曲线的上方,∴此时x的取值范围为-1<x<0或x>1.故选D.点评:本题考查了反比例函数与一次函数的交点问题的运用.关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围.3、C【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算即可.【详解】由圆周角定理得,∠A=∠BOD=,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=−∠A=,故选:C.【点睛】本题考查了圆周角定理以及圆内接四边形的性质,熟练掌握性质定理是解题的关键.4、C【解析】根据主视图的定义即可得出答案.【详解】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合故答案选择C.【点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.5、B【分析】连结,,设半径为r,根据垂径定理得 ,在中,由勾股定理建立方程,解之即可求得答案.【详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.6、C【分析】因为圆沿数轴向左滚动一周的长度是,再根据数轴的特点及的值即可解答.【详解】解:直径为1个单位长度的圆从原点沿数轴向左滚动一周,数轴上表示1的点与点B之间的距离为圆的周长,点B在数轴上表示1的点的左边.点B对应的数是.故选:C.【点睛】本题比较简单,考查的是数轴的特点及圆的周长公式.圆的周长公式是:.7、B【解析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】a2•a4=a2+4=a1.故选:B.8、B【解析】试题分析:∵∠BAC=∠BOD,∴.∴AB⊥CD.∵AE=CD=8,∴DE=CD=1.设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=1,OE=8﹣r,∴OD2=DE2+OE2,即r2=12+(8﹣r)2,解得r=2.故选B.9、B【解析】圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B.10、C【解析】试题分析:根据弧长公式:l==3π,故选C.考点:弧长的计算.11、C【解析】根据中心对称图形的概念 对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12、D【分析】菱形和矩形都是平行四边形,具有平行四边形的所有性质,菱形还具有独特的性质:四边相等,对角线垂直;矩形具有独特的性质:对角线相等,邻边互相垂直.【详解】解答: 解:A、对角相等,菱形和矩形都具有的性质,故A错误;B、四角相等,矩形的性质,菱形不具有的性质,故B错误;C、对角线相等是矩形具有而菱形不具有的性质,故C错误;D、四边相等,菱形的性质,矩形不具有的性质,故D正确;故选D.考点: 菱形的性质;矩形的性质.二、填空题(每题4分,共24分)13、.【解析】⊙O是△ABC的外接圆,∠BAC=60°,;因为OB、OC是⊙O的半径,所以OB=OC,所以=,在中,若⊙O的半径OC为2,OB=OC=2,在中,BC="2"=【点睛】本题考查圆周角与圆心角、弦心距,要求考生熟悉圆周角与圆心角的关系,会求弦心距和弦长14、【分析】在Rt△OBC中求出OB的长,再根据菱形的性质求出AC、BD的长,然后根据菱形的面积等于对角线乘积的一半计算即可.【详解】∵四边形ABCD是菱形,∴∠BOC=90°,∵,,∴BC=4cm,∴OB=cm,∴AC=4cm,BD=cm,∴菱形ABCD的面积是: cm2.故答案为:.【点睛】本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半,菱形是轴对称图形,它有两条对称轴.也考查了直角三角形的性质和勾股定理的应用.15、【分析】根据点关于原点对称,横纵坐标都变号,即可得出答案.【详解】根据对称变换规律,将P点的横纵坐标都变号后可得点,故答案为.【点睛】本题考查坐标系中点的对称变换,熟记变换口诀“关于谁对称,谁不变,另一个变号;关于原点对称,两个都变号”.16、120【分析】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.根据面积关系可得.【。

下载提示
相似文档
正为您匹配相似的精品文档