2023年高中物理圆周运动导学习题课

举报
资源描述
2023年高中物理圆周运动习题课 一、基本规律 1.供需关系与运动 如图所示,F为实际提供的向心力,则 (1)当F=mω2r时,物体做匀速圆周运动; (2)当F=0时,物体沿切线方向飞出; (3)当Fmω2r时,物体逐渐靠近圆心. 2.解决圆周运动问题的基本思路 (1)分析受力,找出向心力的来源,写出向心力的表达式 (2)根据具体情况,结合临界条件及功能关系求解 二、常见题型 题型一 水平面内的圆周运动 1.运动实例:火车转弯、圆锥摆、飞机在水平面内做匀速圆周飞行等. 2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零. 3.涉及静摩擦力时,常出现临界和极值问题. [典例] 如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为FT.(g取10 m/s2,结果可用根式表示)求: (1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大? [解析]  (1)若要小球刚好离开锥面,则小球只受到重力和细线拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得: mgtan θ=mωlsin θ 解得:ω= 即ω0== rad/s. (2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式:mgtan α=mω′2lsin α 解得ω′2=, 即ω′==2 rad/s. [答案] (1) rad/s (2)2 rad/s [总结提升] 水平面内的匀速圆周运动的解题方法 (1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解. 针对训练1. (多选)如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法正确的是(  ) A.球A的线速度必定大于球B的线速度 B.球A的角速度必定小于球B的角速度 C.球A的运动周期必定小于球B的运动周期 D.球A对筒壁的压力必定大于球B对筒壁的压力 解析:选AB.根据上述规律可知,此题中的A、B两小球实际上是具有相同的向心加速度,根据a==Rω2=可知,加速度相同时,半径越大,线速度越大,角速度越小,周期越大,即由RA>RB,可知vA>vB,ωA<ωB,TA>TB,则选项A、B正确,C错误.由于A、B质量相同,在相同的倾斜面上,则向心力相等,进一步可知两球所受的弹力相等,结合牛顿第三定律可知选项D错误. 针对训练2. 如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是(  ) A. b一定比a先开始滑动 B.a、b所受的摩擦力始终相等 C.ω= 是b开始滑动的临界角速度 D.当ω= 时,a所受摩擦力的大小为kmg 解析:选AC.小木块发生相对滑动之前,静摩擦力提供向心力,由牛顿第二定律得,f=mω2r,显然b受到的摩擦力较大;当物体刚要相对于盘滑动时,静摩擦力f达到最大值fmax,由题设知fmax=kmg,所以kmg=mω2r,由此可以求得物体刚要滑动时的临界角速度ω0=,由此得a发生相对滑动的临界角速度为 ,b发生相对滑动的临界角速度为 ;若ω=,a受到的是静摩擦力,大小为f=mω2l=kmg.综上所述,本题正确答案为AC. 题型二 竖直面内的圆周运动 1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种. 2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒. 3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题. 4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形. 物理模型——竖直平面内圆周运动的“轻杆、轻绳”模型 1.模型特点 在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”. 2.模型分析 绳、杆模型常涉及临界问题,分析如下: 轻绳模型 轻杆模型 常见类型 过最高点的临界条件 由mg=m得v临= 由小球能运动即可,得v临=0 讨论分析 (1)过最高点时,v≥,FN+mg=m,绳、轨道对球产生弹力FN (2)不能过最高点时v<,在到达最高点前小球已经脱离了圆轨道 (1)当v=0时,FN=mg,FN为支持力,沿半径背离圆心 (2)当0<v<时,-FN+mg=m,FN背离圆心且随v的增大而减小 (3)当v=时,FN=0 (4)当v>时,FN+mg=m,FN指向圆心并随v的增大而增大 [典例](多选)(2015·东城区模拟)长为L的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内做圆周运动,关于小球在最高点的速度v,下列说法中正确的是(  ) A.当v的值为时,杆对小球的弹力为零 B.当v由逐渐增大时,杆对小球的拉力逐渐增大 C.当v由逐渐减小时,杆对小球的支持力逐渐减小 D.当v由零逐渐增大时,向心力也逐渐增大 [解析] 在最高点球对杆的作用力为0时,由牛顿第二定律得:mg=,v=,A对;当v>时,轻杆对球有拉力,则F+mg=,v增大,F增大,B对;当v<时,轻杆对球有支持力,则mg-F′=,v减小,F′增大,C错;由F向=知,v增大,向心力增大,D对. [答案] ABD [总结提升] 竖直面内圆周运动的求解思路 (1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体. (2)确定临界点:v临=,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是FN表现为支持力还是拉力的临界点. (3)定规律:用牛顿第二定律列方程求解. 针对训练1. (单选)(2015·广州模拟)轮箱沿如图所示的逆时针方向在竖直平面内做匀速圆周运动,圆半径为R,速率v<,AC为水平直径,BD为竖直直径.物块相对于轮箱静止,则(  ) A.物块始终受两个力作用 B.只有在A、B、C、D四点,物块受到的合外力才指向圆心 C.从B运动到A,物块处于超重状态 D.从A运动到D,物块处于超重状态 [解析] 在B、D位置,物块受重力、支持力,在A、C位置,物块受重力、支持力和静摩擦力,故A错;物块做匀速圆周运动,任何位置的合外力都指向圆心,B错;从B运动到A,向心加速度斜向下,物块失重,从A运动到D,向心加速度斜向上,物块超重,C错、D对. [答案] D 针对训练2. 如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是(  ) A.小球通过最高点时的最小速度vmin= B.小球通过最高点时的最小速度vmin=0 C.小球在水平线ab以下的管道中运动时,外侧管壁对小球一定无作用力 D.小球在水平线ab以上的管道中运动时,内侧管壁对小球一定有作用力 [解析] 小球在竖直放置的光滑圆形管道内的圆周运动属于轻杆模型,小球通过最高点的最小速度为0,A错误,B正确;小球在水平线ab以下管道运动,由于沿半径方向的合力提供做圆周运动的向心力,所以外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,故C错误;小球在水平线ab以上管道运动,由于沿半径方向的合力提供做圆周运动的向心力,当速度非常大时,内侧管壁没有作用力,此时外侧管壁有作用力,当速度比较小时,内侧管壁有作用力,故D错误。 [答案] B 针对训练3. (2018·开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角。板上一根长为l=0.60 m的轻绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点。当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s。若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2) 解析:小球在倾斜平板上运动时受到绳子拉力、平板弹力、重力。在垂直平板方向上合力为0,重力在沿平板方向的分量为mgsin α 小球在最高点时,由绳子的拉力和重力沿平板方向的分力的合力提供向心力,有FT+mgsin α= ① 研究小球从释放到最高点的过程,根据动能定理有 -mglsin α=mv12-mv02 ② 若恰好能通过最高点,则绳子拉力FT=0 ③ 联立①②③解得sin α=,解得α=30° 故α的范围为0°≤α≤30°。 答案:0°≤α≤30° 题型三 圆周运动的综合问题 圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手: 1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系. 2.分析每个运动过程的受力情况和运动性质,明确遵守的规律. [典例] (2013·高考福建卷)如图,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0 kg的小球.现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点.地面上的D点与OB在同一竖直线上,已知绳长L=1.0 m,B点离地高度H=1.0 m,A、B两点的高度差 h=0.5 m,重力加速度g取10 m/s2,不计空气影响,求: (1)地面上DC两点间的距离s; (2)轻绳所受的最大拉力大小. [解析] (1)小球从A到B过程机械能守恒,有 mgh=mv① 小球从B到C做平抛运动,在竖直方向上有 H=gt2② 在水平方向上有s=vBt③ 由①②③式解得s=1.41 m.④ (2)小球下摆到达B点时,绳的拉力和重力的合力提供向心力,有F-mg=m⑤ 由①⑤式解得F=20 N 根据牛顿第三定律得F′=-F 故轻绳所受的最大拉力为20 N. [答案] (1)1.41 m (2)20 N [总结提升] 平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速度等于平抛运动的水平初速度;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速度在圆切线方向的分速度.  针对训练1. 如图所示,半径为R、内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同的速度进入管内.A通过最高点C时,对管壁上部压力为3mg,B通过最高点C时,对管壁下部压力为0.75mg,求A、B两球落地点间的距离. 解析:A球通过最高点时,由FNA+mg=m 已知FNA=3mg,可求得vA=2 B球通过最高点时,由mg-FNB=m 已知FNB=0.75mg,可求得vB= 平抛落地历时t= 故两球落地点间的距离s=(vA-vB)t=3R. 答案:3R 针对训练2. 13.(2018·潍坊调研)如图所示,一内壁光滑的圆弧形轨道ACB固定在水平地面上,轨道的圆心为O,半径R=0.5 m,C为最低点,其中
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关资源
正为您匹配相似的精品文档
相关搜索

当前位置:首页 > 中学教育 > 试题/考题 > 高中试题/考题


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号