湖北省恩施市野三关镇民族实验中学2022-2023学年高二数学理期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 一水池有2个进水口,1 个出水口,进出水速度如图甲、乙所示. 某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③ 4点到6点不进水不出水.则一定能确定正确的论断是( )A.① B.①② C.①③ D.①②③参考答案:A略2. 若,其中,是虚数单位,则( ) A.0 B.2 C. D.5参考答案:D略3. 若命题为假,且为假,则A. 为假 B.q假 C.q真 D.不能判断q的真假 参考答案:B略4. 某调查机构调查了某地100个新生婴儿的体重,并根据所得数据画出了样本的频率分布直方图(如图所示),则新生婴儿的体重(单位:kg)在[3.2,4.0)的人数是 ( ).A.30 B.40 C.50 D.55参考答案:B频率分布直方图反映样本的频率分布,每个小矩形的面积等于样本数据落在相应区间上的频率,故新生婴儿的体重在[3.2,4.0)(kg)的人数为100×(0.4×0.625+0.4×0.375)=40.5. 在区间上随机取一个数,的值介于0到之间的概率为A. B. C. D.参考答案:A6. 在△ABC中,A:B:C=4:1:1,则a:b:c=( )A.:1:1 B.2:1:1 C.:1:2 D.3:1:1参考答案:A【考点】正弦定理.【专题】解三角形.【分析】通过三角形的角的比,求出三个角的大小,利用正弦定理求出a、b、c的比即可【解答】解:∵A+B+C=π,A:B:C=4:1:1,∴A=120°,B=C=30°,由正弦定理可知:a:b:c=sinA:sinB:sinC==:1:1.故选:A.【点评】本题考查正弦定理的应用,三角形的内角和,基本知识的考查.7. 若函数y=loga(x2﹣ax+1)有最小值,则a的取值范围是( ) A. 0<a<1 B. 0<a<2,a≠1 C. 1<a<2 D. a≥2 参考答案:C8. 用火柴棒摆“金鱼”,如图所示: 按照上面的规律,第个“金鱼”图需要火柴棒的根数为 ( )A. B. C. D.参考答案:C略9. 盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为( )A.恰有1只是坏的 B.4只全是好的C.恰有2只是好的 D.至多有2只是坏的参考答案:C【考点】CB:古典概型及其概率计算公式.【分析】盒中有10只螺丝钉,从盒中随机地抽取4只的总数为:C104,其中有3只是坏的,则恰有1只坏的,恰有2只好的,4只全是好的,至多2只坏的取法数分别为:C31×C73,C32C72,C74,C74+C31×C73+C32×C72,在根据古典概型的计算公式即可求解可得答案.【解答】解:∵盒中有10只螺丝钉∴盒中随机地抽取4只的总数为:C104=210,∵其中有3只是坏的,∴所可能出现的事件有:恰有1只坏的,恰有2只坏的,恰有3只坏的,4只全是好的,至多2只坏的取法数分别为:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203,∴恰有1只坏的概率分别为: =,恰有2只好的概率为=,4只全是好的概率为,至多2只坏的概率为=;故选C10. 已知,若,则A. B. C. D. 参考答案:C二、 填空题:本大题共7小题,每小题4分,共28分11. 椭圆(为参数)的离心率是 .参考答案:12. 一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是 .参考答案:【考点】列举法计算基本事件数及事件发生的概率.【分析】记事件“甲取到2个黑球”为A,“乙取到2个黑球”为B,由P(B|A)=能求出事件“甲取到2个黑球,乙也取到2个黑球”的概率.【解答】解:记事件“甲取到2个黑球”为A,“乙取到2个黑球”为B,则有P(B|A)===.∴事件“甲取到2个黑球,乙也取到2个黑球”的概率是.故答案为:.13. 过点且与椭圆有相同焦点的双曲线的方程为 ▲ 参考答案:14. 在平面直角坐标系xOy中,若圆C的圆心在第一象限,圆C与x轴相交于、两点,且与直线相切,则圆C的标准方程为_________.参考答案:.【分析】设圆心与半径,根据条件列方程组,解得结果.【详解】设圆:,则,解得15. 在△ABC中,已知?=tanA,当A=时,△ABC的面积为 .参考答案:【考点】平面向量数量积的运算;正弦定理.【专题】解三角形;平面向量及应用.【分析】利用平面向量的数量积运算法则及面积公式化简即可求出【解答】解:∵?=tanA,A=,∴?=||?||cos=tan=,∴||?||=∴S△ABC=|AB||AC|sinA=××=故答案为:【点评】本题考查了向量的数量积公式,以及三角形的面积公式,属于基础题16. 设等差数列的前n项和为,若,,则当取最小值时,n等于_____参考答案:617. . 已知(其中.是实数,是虚数单位),则 .参考答案:3略三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 已知x,y都是正数.(1)若3x+2y=12,求xy的最大值;(2)若x+2y=3,求的最小值.参考答案:【考点】基本不等式.【分析】(1)由于3x+2y=12,再根据xy=?3x?2y,利用基本不等式求得xy的最大值.(2)由x+2y=3,得到1=,故=()(),利用基本不等式求得最小值.【解答】解:(1)∵3x+2y=12,∴xy=?3x?2y≤×()2=6,当且仅当3x=2y=6时,等号成立.∴当且仅当3x=3时,xy取得最大值.(2)∵x+2y=3,∴1=,∴=()()=+++≥1+2=1+,当且仅当=,即x=3﹣3,y=3﹣时取等号,∴最小值为.【点评】本题主要考查基本不等式的应用,注意基本不等式的使用条件,以及等号成立的条件,式子的变形是解题的关键,属于基础题.19. 如图,在直三棱柱ABC﹣A1B1C1中,AB⊥侧面BB1C1C,E是CC1上的中点,且BC=1,BB1=2.(Ⅰ)证明:B1E⊥平面ABE(Ⅱ)若三棱锥A﹣BEA1的体积是,求异面直线AB和A1C1所成角的大小.参考答案:【考点】异面直线及其所成的角;直线与平面垂直的判定.【分析】(Ⅰ)连接BE,只需证明BE⊥B1E,且AB⊥B1E=B,即可得到B1E⊥平面ABE;(Ⅱ)由V=V=V==,得AB=,异面直线AB和A1C1所成角为∠CAB,即可求解.【解答】证明:(Ⅰ)连接BE,∵BC=1 BB1=2,E是CC1上的中点△BCE,△B1C1E为等腰直角三角形,即,∴,即BE⊥B1E∵AB⊥面BB1C1C.B1E?面ABC,∴B1E⊥AB,且AB∩BE=B,∴B1E⊥平面ABE;解:(Ⅱ)∵AB∥A1B1,∴A1、B1到面ABE的距离相等,由(Ⅰ)得BE=B1E=故V=V=V==解得AB=∵AC∥A1C1,∴异面直线AB和A1C1所成角为∠CAB,在Rt△ABC中,tan,∴∠CAB=30°∴异面直线AB和A1C1所成角的大小30°. 20. 在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD为等边三角形,,AB⊥AD,AB∥CD,点M是PC的中点.(I)求证:MB∥平面PAD;(II)求二面角P﹣BC﹣D的余弦值.参考答案:【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取PD中点H,连结MH,AH.推导出四边形ABMH为平行四边形,从而BM∥AH,由此能证明BM∥平面PAD.(Ⅱ) 取AD中点O,连结PO.以O为原点,建立空间直角坐标系,利用向量法能求出二面角P﹣BC﹣D的余弦值.【解答】(本小题满分12分)证明:(Ⅰ)取PD中点H,连结MH,AH.因为 M为中点,所以.因为.所以AB∥HM且AB=HM.所以四边形ABMH为平行四边形,所以 BM∥AH.因为 BM?平面PAD,AH?平面PAD,所以BM∥平面PAD.…..解:(Ⅱ) 取AD中点O,连结PO.因为 PA=PD,所以PO⊥AD.因为 平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,所以PO⊥平面ABCD.取BC中点K,连结OK,则OK∥AB.以O为原点,如图建立空间直角坐标系,设AB=2,则,.平面BCD的法向量,设平面PBC的法向量,由,得令x=1,则..由图可知,二面角P﹣BC﹣D是锐二面角,所以二面角P﹣BC﹣D的余弦值为.…..21. 已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项.(1)求数列{an}的通项公式;(2)设bn=,是否存在最大的整数t,使得对任意的n均有Sn>总成立?若存在,求出t;若不存在,请说明理由.参考答案:【分析】(1)依已知可先求首项和公差,进而求出通项an和bn,在求首项和公差时,主要根据先表示出等差数列的三项,根据这三项是等比数列的三项,且三项成等比数列,用等比中项的关系写出算式,解出结果.(2)由题先求出{bn}的通项公式后再将其裂成两项的差,利用裂项相消的方法求出和Sn,利用递增数列的定义判断出数列{Sn}是单调递增的,求出其最小值得到t的范围.【解答】解:(1)由题意得(a1+d)(a1+13d)=(a1+4d)2,…(2分)整理得2a1d=d2.∵a1=1,解得(d=0舍),d=2.…(4分)∴an=2n﹣1(n∈N*).…(6分)(2),∴=.…(10分)假设存在整数总成立.又,∴数列{Sn}是单调递增的. …(12分)∴.又∵t∈N*,∴适合条件的t的最大值为8.…(14分)【点评】本题主要考查了数列的基本知识和解决数列问题的基本方法,如基本量法,错位相减求和法等.本题是一个综合题,若在高考题中出现时,应该是一个合格的题目22. 在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程;(1-4班做)(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.(5-7班做)(Ⅱ)设P(-4,1)为圆C2外一点,过P作圆C2的两条切。