工业园屋顶分布式光伏发电项目设计方案

举报
资源描述
工业园屋顶分布式光伏发电项目设计方案 二、工程概况 2.1 地理位置 本项目位于省万年县,利用厂房屋顶铺设太阳能电池组件。 2.2 气候资源 万年地处省东北部、鄱阳湖东南岸,属于丘陵地区,土地面积1140.76平方公里。地理坐标为北纬2830'15"—2854'5",东经11646'48'—11715'10",东西宽47公里,南北长43公里。日照 年均日照时数为1803.5小时,最长月份日照时数为255.4小时,出现在7月份;最短月份日照明数为83.6小时,出现在2月份。年均太阳辐射总量为108.7千卡/平方厘米。气温 年平均气温为17.4℃,年均最高气温出现在1961年,18.6℃;极端最低温度-12.8℃,极端最高达41.2℃; 2.3 项目规模、用途 项目规划装机容量102.96KWp。采用260Wp多晶组件396块,屋面形式为混凝土屋面,屋顶面积约1000㎡,装机容量为102.96MWp。 本工程采用分区发电,组串逆变集中并网方案,每个光伏发电单元的电池组件采用串联的方式组成太阳能电池组串,太阳能电池组串接入组串式逆变器、交流汇流箱,并网柜集中并入厂区0.38kV母线,项目遵循自发自用,就地消化以及余电上网的原则进行并网。 三、 技术方案 3.1 项目设计目标 城市屋顶光伏电站的建设进一步加强了光伏示项目的环保示效应,符合我国21世纪可持续发展能源战略规划;也是发展循环经济模式,建设和谐社会的具体体现;同时对健全光伏产业链、推进太阳能利用及光伏产业的发展进程具有非常重大的示意义,其社会、经济、环保等效益显著。 1.节约建筑能耗 在闲置的屋顶结构上安装光伏阵列,实现太阳能与建筑一体化,无需额外用地或增建其他设施,适用于人口密集、土地昂贵的城市建筑。由于光伏阵列安装在屋顶结构上,吸收太阳能,转化为电能,大大降低了室综合温度,减少了墙体得热,既节省了能源,又利于保证室的空气品质。 2.补充电网能源结构,缓解用电高峰期间电网压力 有资料统计表明,我国建筑能耗(包括建造能耗、生活能耗、采暖空调等)约占全社会总能耗的30%,其中最主要的采暖和空调,占到20%,在用电高峰期间,电网供电压力较大。而光伏发电系统由于自身发电特点,在有日照的条件下方可发电,并且日照条件越好,系统出力越大。 3.节能减排 在化石能源逐步枯竭、环境污染日异严重、生态意识不断增强的今天,实现光电建筑一体化,避免了由于使用一般化石燃料发电所导致的空气污染和废渣污染,不产生固体废弃物,又能够优化能源结构,创造生态环境,改善居住条件,还将对建设生态文明与和谐社会发挥十分重要的战略作用。 4.调整地区能源结构 是典型的能源消费型城市,正处于转型发展的关键时期,加快推进能源发展既是适应国外能源发展新形势、新要求的积极举措,也是促进绿色发展、提升城市形象的必然选择。 是全省经济发达、最具发展活力的地区之一,潜在的电力需求十分巨大。制造业已形成较为完备的制造业体系。电子产业、纺织产业、机械制造、化工产业及食品饮料等发展迅猛,从中长期看,市电力工业将保持持续较快增长,随着经济的持续快速增长和人民生活水平的提高,电力增长空间仍然较大。 本项目的建设是贯彻落实科学发展观、建成资源节约型、环境友好型社会,落实“节能减排”战略目标的具体体现。可降低煤炭比重,大力增加清洁能源供应,将缓解环境治理压力,提高城市的绿色发展水平。 3.2设计原则 1 稳定性 太阳能发电运行的成熟稳定性至关重要,本系统将采用先进成熟的技术与设备,结合完善的保护措施,以保证系统稳定运行。 2 先进性 本项目系统设计的过程中,将通过优化系统配置、选择先进的关键设备,实现智能控制,以保证系统的先进性。 3 高效性 选用高效的电气设备,降低设备损耗;光伏组件到逆变器以及从逆变器到并网点的电力电缆应尽可能保持在最短距离,减小线路损失,提高系统的输出能量。 4 展示性 太阳能光伏发电是新能源的重要部分,本项目将不仅体现光伏系统的设计和应用技术水平,缓解当地供电压力,还将体现对可再生能源的重视,因此系统的展示性不可忽视。本项目将有良好的展示效果,可向当地政府和市民直观展示清洁能源的有效利用,宣扬环保理念,同时还可作为业主单位的展示基地。 3.3 设计依据 1)业主方提供的相关图纸。 2)相关标准: 国家电网公司 《光伏电站接入电网技术规定》 IEC 60904 光电器件; IEC 61173 光电功率发生系统过压保护.导则; IEC 61215-1993 晶体硅地面光伏电池组件 设计鉴定和定型; IEC 61204 直流输出低压供电装置.特性和安全要求; IEC 61000-4-30 电磁兼容 第4-30部分 试验和测量技术-电能质量 IEC 60364-7-712 建筑物电气装置 第7-712部分: 特殊装置或场所的要求 太伏(PV)发电系统 IEC 61721-1995 光电模块对意外碰撞的承受能力(抗撞击试验); IEC 60364 建筑物的电气设施; IEC 60269-1 低压熔断器 GB/T 191 包装储运图示标志 GB/T 18479-2001 地面用光伏(PV)发电系统 概述和导则 GB/T 19939-2005 光伏系统并网技术要求 GB/Z 19964-2005 光伏发电站接入电力系统技术规定 GB/T 6495.2-1996 光伏器件 第2部分:标准太阳电池的要求; GB/T 20046-2006 光伏(PV)系统电网接口特性(IEC 61727:2004,MOD) GB/T 2297-1989 太伏能源系统术语 GB/T 2423.1-2001 电工电子产品基本环境试验规程试验A:低温试验方法 GB/T 2423.2-2001 电工电子产品基本环境试验规程试验B:高温试验方法 GB/T 2423.9-2001 电工电子产品基本环境试验规程试验Cb:设备用恒定湿热试验方法 GB 4208 外壳防护等级(IP代码)(equ IEC 60529:1998) GB 3859.2—1993 半导体变流器应用导则 GB/T 12325-2008 电能质量 供电电压偏差 GB/T 12326-2008 电能质量 电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-2008 电能质量 三相电压不平衡 DL/T 448 电能计量装置技术管理规定 DL/T 614 多功能电能表 DL/T 645 多功能电能表通信协议 DL/T 5202 电能量计量系统设计技术规程 SJ/T 11127 光伏(PV)发电系统过电压保护-导则 CGC/GF003.1:2009 并网光伏发电系统工程验收技术规 分布式光伏发电项目接入系统典型设计国家电网公司 3.4 载荷分析 通常混凝土屋面设计荷载为200KG/平米,本项目实施过程中,组件及混凝土压块总荷载小于75KG/平米。彩钢瓦屋面采用轻质铝合金导轨安装组件支架,屋顶设计荷载为100KG/平米,本项目组件安装每平米的荷载小于75KG/平米。 由上述分析可见,光伏系统各项荷载指标均符合建筑屋顶的规设计要求,对已有建筑屋顶不存在结构安全的影响。 项目设计过程中,将对业主提供的厂房屋面图纸及现场实际情况进行载荷复核,如有必要,将采取加固措施,确保项目实施万无一失 3.5 建筑一体化设计 本项目光伏发电,在屋顶上均匀布置受力点后安装组件支架及梁柱上,彩钢瓦屋面采用平铺方案进行布置。具体方案如下: 图3-1 光伏建筑一体化系统示意图 3.6 支架安装方案 本项目涉及的建筑为钢筋混凝土屋面面,因此支架安装将根据不同类型的屋面分别采取相应的实施方案。 混凝土屋面 涉及混凝土屋面安装的拟采用沿屋面散水呈倾角或平铺安装(具体根据项目地实际情况选择)。为避免对屋面现有防水层造成破坏,因此采用不穿透屋面的压块配重固定方式,即用混凝土压块将安装支架固定于现场屋面,再将太阳板固定其上的方式,具体安装方式如下: 图3-2 混凝土结构屋面支架示意图 该实施方案无需考虑破坏屋顶结构,安装所需材料规格统一。可实现工厂化生产,现场加工量小,对施工现场环境影响小,工期短,方案经济性高。 类似项目安装效果图 图3-4 混凝土屋面 3.7 并网系统设计 并网太阳能光伏发电系统的主要部件为太阳能光伏组件和并网逆变器。并网系统的基本构成见图3-6: 图3-6 并网系统原理图 该光伏电站建设完成后分别并入厂区10kV电网,并网运行,给厂区提供电力补充。当光照充足时,光伏发电系统所发电力输入场区电网,作为补充供场区设备使用,光伏电站所发电不足以供设备使用时,从电网获取电能。 光伏电气接入方案 具体光伏电气接入方案参考国家电网公司提供的《分布式光伏发电项目接入系统典型设计》以及当地供电公司的要求。 图3-7 接入方案示意图 3. 8 低压电缆、导线的选型及敷设 所选电缆的横截面积和连接器容量必须满足最大系统短路电流(用于单个组件的电缆线材质和横截面积推荐为铜芯,耐压1000V,连接器的额定电流大于10A)。方阵部和方阵之间的连接选取的电缆额定电流为计算所得电缆中最续电流的1.5倍。 逆变器连接选取的电缆额定电流为计算所得电缆中最续电流的1.25倍。 单回路穿镀锌金属电管或PVC电管敷设。多回路汇总后沿电缆沟/铝合金线槽敷设。线管管径和铝合金线槽截面面积需满足相关电气设计规。电缆、导线在线槽应做固定。 3.9 防雷和接地设计 光伏系统设备的安全性和稳定性的技术措施主要涉及到防雷和接地的专项措施。 1、直流侧防雷措施:电池支架应保证良好的接地,光伏电池阵列连接电缆接入组串逆变器,含高压防雷器保护装置; 2、交流侧防雷措施:每台交流汇流箱及升压变压器等设备,均装有防雷器,可有效地避免雷击和电网浪涌导致设备的损坏; 3、本工程电气配电装置采用全户布置,为使光伏电池组件和相关电器设备受到直击雷和感应雷的雷击时能有可靠的保护,光伏方阵支架防雷使用建筑原有防雷系统。为保证人身安全,所有电气设备都接入建筑的防雷接地系统,并将电气设备外壳接地。连接点测量接地电阻值按小于4Ω考虑。 4、所有的机柜要有良好的接地。 5、对于安装在屋顶或建筑物上的光伏系统,特别是在雷暴多发地区,必须配备防雷装置,以防止直击雷对系统的损坏;防雷装置接地必须可靠,光伏组件支架必须正确接地。使用推荐的连接端子并将接地电缆良好地连接,固定到组件框架上,使用经过电镀处理的支撑框架,以保证电路导通良好。 6、本工程低压配电系统接地型式采用TN-S系统。其中性线和保护地线(PE)在接地点后要严格分开。凡正常不带电,而当绝缘破坏有可能呈现电压的一切电气设备金属外壳均应可靠接地。 整个系统通过多种保护如过/欠压,过流,过载,防雷等保护功实现安全、稳定运行。 3.10 数据采集和监测、控制显示系统 本项目涉及到多点并网,因此可以采取分布式和集中式相结合的监测控制方案。由于各光伏并网逆变器都自带数据采集模块和RS485接口,而且采用同一厂家的产品,所以可以很方便地通过数据信号线、光伏专用监控软件,进行单点和集中监测和控制。 对于运行的光伏电站系统,需要监测的数据有太阳辐射量、光电池电压及电流、电池组件温度、逆变器输入/输出电压及电流、控制室温度等。由于采集参数的多样性和分散性,系统采用了分布式数据采集的结构模式。所谓分布式数据采集,就是利用电量隔离变送器、温度传感器、太阳辐射测量仪等设备就近分散采集现场数据,通过智能数据采
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关搜索

当前位置:首页 > 行业资料 > 工业设计


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号