(全国版)高考物理一轮复习课时练习选修3-5 第六章 第2讲 (含解析)

举报
资源描述
第2讲 动量守恒定律及其应用 知识排查 动量守恒定律 1.内容 如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。 2.表达式 (1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′。 (2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。 (3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。 3.动量守恒的条件 (1)理想守恒:系统不受外力或所受外力的矢量和为零,则系统动量守恒。 (2)近似守恒:系统受到的外力矢量和不为零,但当内力远大于外力时,系统的动量可近似看成守恒。 (3)某一方向上守恒:系统在某个方向上所受外力矢量和为零时,系统在该方向上动量守恒。 弹性碰撞和非弹性碰撞 1.碰撞 物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。 2.特点 在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。 3.分类 动量是否守恒 机械能是否守恒 弹性碰撞 守恒 守恒 非完全弹性碰撞 守恒 有损失 完全非弹性碰撞 守恒 损失最多 反冲和爆炸问题 1.反冲 (1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动。 (2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力。实例:发射炮弹、爆竹升空、发射火箭等。 (3)规律:遵从动量守恒定律。 2.爆炸问题 爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。 小题速练 1.思考判断 (1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒。(  ) (2)动量守恒只适用于宏观低速。(  ) (3)物体相互作用时动量守恒,但机械能不一定守恒。(  ) (4)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相同。(  ) 答案 (1)√ (2)× (3)√ (4)√ 2.[人教版选修3-5·P16·T5改编]某机车以0.8 m/s 的速度驶向停在铁轨上的15节车厢,跟它们对接。机车跟第1节车厢相碰后,它们连在一起具有一个共同的速度,紧接着又跟第2节车厢相碰,就这样,直至碰上最后一节车厢。设机车和车厢的质量都相等,则跟最后一节车厢相碰后车厢的速度为(铁轨的摩擦忽略不计)(  ) A.0.053 m/s     B.0.05 m/s C.0.057 m/s D.0.06 m/s 解析 取机车和15节车厢整体为研究对象,由动量守恒定律mv0=(m+15m)v,v=v0=×0.8 m/s=0.05 m/s。故选项B正确。 答案 B 3.(2017·全国卷Ⅰ,14)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)(  ) A.30 kg·m/s B.5.7×102 kg·m/s C.6.0×102 kg·m/s D.6.3×102 kg·m/s 解析 设火箭的质量为m1,燃气的质量为m2。由题意可知,燃气的动量p2=m2v2=50×10-3×600 kg·m/s=30 kg·m/s。根据动量守恒定律可得0=m1v1-m2v2,则火箭的动量大小为p1=m1v1=m2v2=30 kg·m/s,所以选项A正确,B、C、D错误。 答案 A  动量守恒定律的条件及应用 1.动量守恒定律的适用条件 (1)前提条件:存在相互作用的物体系。 (2)理想条件:系统不受外力。 (3)实际条件:系统所受合外力为零。 (4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力。 (5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。 2.动量守恒定律的四个特性 相对性 公式中v1、v2、v1′、v2′必须相对于同一个惯性系 同时性 公式中v1、v2是在相互作用前同一时刻的速度,v1′、v2′是在相互作用后同一时刻的速度 矢量性 应先选取正方向,凡是与选取的正方向一致的动量为正值,相反为负值 普适性 不仅适用于低速宏观系统,也适用于高速微观系统 【例1】 如图1所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为mA=2 kg、mB=1 kg、mC=2 kg。开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。求A与C发生碰撞后瞬间A的速度大小。 图1 解析 因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为vA,C的速度为vC,以向右为正方向,由动量守恒定律得 mAv0=mAvA+mCvC① A与B在摩擦力作用下达到共同速度,设共同速度为vAB,由动量守恒定律得 mAvA+mBv0=(mA+mB)vAB② A与B达到共同速度后恰好不再与C碰撞,应满足 vAB=vC③ 联立①②③式,代入数据得 vA=2 m/s④ 答案 2 m/s 应用动量守恒定律解题时应该首先判断动量是否守恒,这就需要理解好动量守恒的条件,基本思路如下 1.(多选) (2018·湖北武汉三模)如图2所示,在光滑水平面上有一辆平板车,一人手握大锤站在车上。开始时人、锤和车均静止。此人将锤抡起至最高点,此时大锤在头顶的正上方,然后,人用力使锤落下敲打车的左端,如此周而复始,使大锤连续地敲打车的左端,最后,人和锤都恢复至初始状态并停止敲打。在此过程中,下列说法中正确的是 (  ) 图2 A.锤从最高点落下至刚接触车的过程中,车的动量方向先水平向右,后水平向左 B.锤从刚接触车的左端至锤的速度减小至零的过程中,车具有水平向左的动量,车的动量减小至零 C.锤从刚离开车的左端至运动到最高点的过程中,车具有水平向右的动量,车的动量先增大后减小 D.在任一时刻,人、锤和车组成的系统动量守恒 解析 由水平方向动量守恒可知锤从最高点落下至刚接触车的过程中,车的动量方向先水平向右,后水平向左,故A正确;锤从刚接触车的左端至锤的速度减小至零的过程中,车具有水平向左的动量,车的动量减小至零,故B正确;锤从刚离开车的左端至运动到最高点的过程中,锤的动量方向先向左再向右,则车的动量先向右再向左,故C错误;人、锤和车组成的系统,在水平方向上所受的外力之和为零,水平方向上动量守恒,故D错误。 答案 AB 2.[临界问题]两磁铁各放在两辆小车上,小车能在水平面上无摩擦地沿同一直线运动。已知甲车和磁铁的总质量为0.5 kg,乙车和磁铁的总质量为1 kg,两磁铁的N极相对。推动一下,使两车相向运动,某时刻甲的速率为2 m/s,乙的速率为3 m/s。方向与甲相反,两车运动过程中始终未相碰。则: (1)两车最近时,乙的速度为多大? (2)甲车开始反向时,乙的速度为多大? 解析 (1)两车相距最近时,两车的速度相同,设该速度为v,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得m乙v乙-m甲v甲=(m甲+m乙)v 所以两车最近时,乙车的速度为 v== m/s= m/s。 (2)甲车开始反向时,其速度为0,设此时乙车的速度为v乙′,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得 m乙v乙-m甲v甲=m乙v乙′ 解得v乙′=2 m/s 答案 (1) m/s (2)2 m/s  碰撞模型的规律及应用 1.碰撞现象满足的规律 (1)动量守恒定律。 (2)机械能不增加。 (3)速度要合理。 ①若碰前两物体同向运动,则应有v后>v前,碰后原来在前面的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。 ②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。 2.弹性碰撞的结论 两球发生弹性碰撞时应满足动量守恒和机械能守恒。以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有 m1v1=m1v1′+m2v2′ m1v=m1v1′2+m2v2′2 【例2】 (2018·湖北宜昌西陵区期末)甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p1=5 kg·m/s,p2=7 kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s,则两球质量m1与m2间的关系可能是(  ) A.m1=m2 B.2m1=m2 C.4m1=m2 D.6m1=m2 解析 甲、乙两球在碰撞过程中动量守恒,所以有p1+p2=p1′+p2′,得p1′=2 kg·m/s。 由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加。所以有+≥+,得m1≤m2。因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有>,即m1<m2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即<,所以m1>m2。因此选项C正确。 答案 C 1.如图3所示,半径和动能都相等的两个小球相向而行。甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是(  ) 图3 A.甲球速度为零,乙球速度不为零 B.两球速度都为零 C.乙球速度为零,甲球速度不为零 D.两球都以各自原来的速率反向运动 解析 首先根据两球动能相等,m甲v=m乙v得出两球碰前动量大小之比为=,因m甲>m乙,则p甲>p乙,则系统的总动量方向向右。根据动量守恒定律可以判断,碰后两球运动情况可能是A所述情况,而B、C、D情况是违背动量守恒的。 答案 A 2.(2019·青岛模拟)某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图4所示的位移—时间图象。图中的线段a、b、c分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系。已知相互作用时间极短,由图象给出的信息可知(  ) 图4 A.碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2 B.碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大 C.碰前滑块Ⅰ的动能比滑块Ⅱ的动能小 D.滑块Ⅰ的质量是滑块Ⅱ的质量的 解析 根据x-t图象的斜率等于速度,可知碰前滑块Ⅰ速度为v1=-2 m/s,滑块Ⅱ的速度为v2=0.8 m/s,则碰前速度大小之比为5∶2,故选项A错误;碰撞前后系统动量守恒,碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前总动量也为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,故选项B错误;碰撞后的共同速度为v=0.4 m/s,根据动量守恒定律,有m1v1+m2v2=(m1+m2)v,解得m2=6m1,由动能的表达式可知,m1v>m2v,故选项C错误,D正确。 答案 D  常见的三个经典模型 模型 “人船模型”类问题的处理方法 1.人船模型的适用条件 物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为零。 2.人船模型的特点 (1)遵从动量守恒定律:m1v1-m2v2=0。如图5所示。 图5 (2)两物体的位移满足:m-M=0 x人+x船=L 即x人=L,x船=L 【例3】 (2019·辽宁凌源模拟)长度为L、质量为M的平板车的左端紧靠着墙壁,右端站着一个质量为m的人(可视为质点),某时刻人向左跳出,恰好落到车的左端,而此时车已离开墙壁有一段距离,那么这段距离为(车与水平地面间的摩擦不计)(  ) 图6 A.L B. C. D. 解析 设人从小车上跳起后沿水平方向的分速度为v1,小车
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关资源
正为您匹配相似的精品文档
相关搜索

当前位置:首页 > 中学教育 > 高考


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号