2022计算机行业深度研究报告:汽车智能化与工业数字化专题

举报
资源描述
2022计算机行业深度研究报告:汽车智能化与工业数字化专题 感知层研究框架 环境感知+车身感知+网联感知组成车载感知系统 整个车载感知系统主要包括环境感知、车身感知与网联感知三大部分。其中,(1)环境感知:主要负责车辆从外界获取信息,如附近车辆、车道线、行人、建筑物、障碍物、交通标志、信号灯等,主要包括四大类别的硬件传感器车载摄像头、毫米波雷达、激光雷达、超声波雷达;(2)车身感知:主要负责车辆对自身状态的感知,如车辆位置、行驶速度、姿态方位等,主要包括惯性导航、卫星导航和高精度地图;(3)网联感知:主要负责实现车辆与外界的网联通信以此来获得道路信息、行人信息等,主要包括各类路侧设备、车载终端以及V2X 云平台等。 四大硬件传感器是自动驾驶汽车的眼睛,是环境感知的关键。车载传感器主要包括车载摄像头、毫米波雷达、激光雷达、超声波雷达四大类。自动驾驶汽车首先是对环境信息与车内信息的采集、处理与分析,这是实现车辆自主驾驶的基础和前提。环境感知是自动驾驶车辆与外界环境信息交互的关键,车辆通过硬件传感器获取周围的环境信息,环境感知是一个复杂的系统,需要多种传感器实时获取信息,各类硬件传感器是自动驾驶汽车的眼睛。 当前自动驾驶正处在 L2 向 L3 级别跨越发展的关键阶段。其中,L2 级的ADAS是实现高等级自动驾驶的基础,从全球各车企自动驾驶量产时间表来看,L3级别自动驾驶即将迎来大规模地商业化落地。 随着自动驾驶级别的提升,单车传感器的数量呈倍级增加。预计自动驾驶Level1-2 级需要 10-20 个传感器,Level 3 级需要 20-30 个传感器,Level 4-5级需要40-50 个传感器。 Level 1-2 级别:通常具有 1 个前置远程雷达和1 个摄像头,用于自适应巡航控制,紧急制动辅助和车道偏离警告/辅助。2 个向后的中程雷达可实现盲点检测,外加 4 个摄像头和 12 个超声波雷达则可实现 360 度视角的泊车辅助功能。预计Level 1-2 的总传感器数量约为 10-20 个左右。 Level 3 级别:在 Level 1-2 配置的基础上,外加1 个远程激光雷达,由于主动距离测量,激光雷达还具有高分辨率,广角和高精度的特点,这对于检测和分类对象或跟踪地标以进行定位将是必需的。对于高速公路领航系统(Highwaypilot)应用,通常会额外增加 1 颗后向的远程激光雷达。预计会使用6-8个摄像头,8-12 个超声波雷达和 4-8 个毫米波雷达,以及1 个激光雷达,因此,预计 Level 3 的传感器总数量会在 20-30 个左右。 Level 4-5 级别:通常需要多种传感器进行 360°视角的交叉验证,以消除每种传感器的弱点。预计会使用 8-15 个摄像头,8-12 个超声波雷达和6-12个毫米波雷达,以及 1-3 个激光雷达,因此,预计用于Level 4 至5 的传感器总数量会在 30-40 个左右。 从本次广州车展来看,各家新车型均搭配多个激光雷达,以此来提前布局高阶自动驾驶,哪吒 S 配置了 3-6 颗混合固态激光雷达,售价在30 万以上的新车型普遍搭配了支持 L3-L4 级自动驾驶所需要的各类传感器(2+颗激光雷达、12 颗超声波雷达、7-10 颗高清摄像头、5+颗毫米波雷达)。以蔚来ET7 为例,共搭载了多达33 个高精度传感器,包括 1 个超远距高精度激光雷达、11 个800 万像素高清摄像头、5 个毫米波雷达、12 个超声波传感器、2 个高精定位单位、1 个V2X 车路协同感知系统和 1 个 ADMS 增强主驾感知,较蔚来 ES8 的25 个传感器还多了8个。 各国政策不断刺激,助力高阶辅助驾驶 ADAS 快速落地。美国在2011 年开始就强制所有轻型商用车和乘用车搭载 ESP 系统,欧盟从2013 年开始强制安装重型商用车搭载 LDW、AEB 等功能,日本从 2014 年强制要求商用车搭载AEB 系统,2019年欧盟与日本等 40 国达成草案,将于 2020 年起全部轻型商用车和乘用车强制安装AEB 系统。中国自 2016 年开始出台各项政策,逐步强制商用车搭载LDW、FCW、LKA、AEB 等 ADAS 功能。 各国新车测试标准不断增加对主动安全 ADAS 功能的权重。NCAP(NewCarAssessment Program,新车测试项目)是测试机构对新车型的车辆安全水平进行全面评估,并直接面向公众公布试验结果。NCAP 是民间组织,不受政府机构组织控制。碰撞测试成绩则由星级表示,共有五个星级,星级越高表示该车的碰撞安全性能越好。在部分国家,AEB 等系统已经成为五行评级的必备条件。从各国NCAP的路线图能够看出,美国 NHTSA 从 2011 年就将 LDW、FCW 等指标纳入加分项,美国 IIHS 从 2014 年开始将 FCW 和 AEB 规定为最高评级的必备条件,欧盟Euro-NCAP从 2014 就将 AEB 纳入评分体系,并不断增加测试场景,中国C-NCAP 从2017年首次纳入 AEB 测试。各国对各类 ADAS 辅助驾驶系统的重视程度不断提升,带动高阶辅助驾驶的全面落地。 (1)激光雷达:是 L3 级以上自动驾驶的必备传感器 激光雷达,即(LiDAR, Light Detection and Ranging),是一种通过发射激光束来测量周围环境物体的距离和方位的方法。激光雷达主要由发射模块、处理模块和接收模块组成,其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,做适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态及形状等参数,从而对障碍物、移动物体等目标进行探测、追踪和识别。激光雷达是当下已知的车载雷达中探测距离远,角度测量精度极高的一种。激光雷达可以准确的感知周边环境的三维信息,探测精度在厘米级以内。激光雷达能够准确的识别出障碍物具体轮廓、距离成 3D 点云,且不会漏判、误判前方出现的障碍物,激光雷达普遍的有效探测距离也更远。与毫米波雷达和摄像头相比,激光雷达具备高分辨率、远距离和视角广阔等特性。 激光雷达诞生于 1960 年,起初用于科研及测绘项目,全球首个车规级激光雷达在 2017 年实现量产。1960 年美国休斯实验室的西奥多·梅曼发明了人类历史上第一台激光器,随着激光器的发展,激光雷达逐渐发展起来。早期激光雷达主要用于科研及测绘项目,进行气象探测以及针对海洋、森林、地表的地形测绘。2010年,Neato 公司把激光雷达安在了扫地机器人上面,推出了Neato XV-11,Neato公司将单个激光雷达的成本控制在 30 美元以内,解决了激光雷达的量产难题,打开了激光雷达在民用市场的空间。而车载雷达的发展历史可以追溯到 21 世纪初,在2007 年,美国国防部组织的DARPA 无人车挑战赛上,参赛的 7 只队伍,就有 6 只安装了Velodyne 的激光雷达。2010 年 Ibeo 公司同法雷奥合作进行车规化激光雷达SCALA 的开发,SCALA为基于转镜架构的 4 线激光雷达,在 2017 年成为了全球第一款车规级激光雷达,SCALA并在当年搭载在全新的奥迪 A8 上。 智能驾驶将是未来五年激光雷达市场的主要增长动力。根据Yole 的预测,2019年全球激光雷达市场规模约为 16 亿美金,预计到2025 年全球激光雷达市场规模将达到 38 亿美金,年复合增长率约为 20%。按照各细分应用板块来看,智能驾驶场景未来五年的复合增长率将超过 60%,将会为整个激光雷达市场提供18亿美金的增量,预计到 2025 年,智能驾驶场景将占到整个激光雷达市场规模的50%,成为激光雷达市场的主要增长动力。此外,各种工业及服务机器人对激光雷达的需求也在快速增长,也将带动整个激光雷达市场规模持续扩大。 激光雷达是车载摄像头与毫米波雷达的有效补充,将是L3 级及以上自动驾驶的必备传感器。从工作原理来看,激光雷达发射的光波的频率比微波高出2-3个数量级,因此激光雷达具有极高的距离分辨率、角分辨率和速度分辨率,因此测量精度更高,获得信息更为立体,同时,由于激光波长短,可发射发散角非常小的激光束,可探测低空/超低空目标,抗干扰能力强。即便是纯视觉的方案从效果上能够一定程度代替激光雷达的自动驾驶方案,但是对于高阶自动驾驶而言,安全驾驶是其重要的一步,在感知环节的传感器冗余能够有限提升车辆的安全冗余,激光雷达将是 L3 及以上自动驾驶的必备传感器。 ToF 激光雷达是当前的主流,未来 ToF 与 FMCW 会共存。按照探测方式来分,分成了非相干测量(脉冲飞行时间测量法 ToF 为代表)和相干测量(典型为FMCW调频连续波)。ToF 与 FMCW 能够实现室外阳光下较远的测程(100~250m),是车载激光雷达的优选方案。ToF 是目前市场车载中长距激光雷达的主流方案,未来随着FMCW 激光雷达整机和上游产业链的成熟,ToF 和 FMCW 激光雷达将在市场上并存。 混合固态方案作为当前市场的过渡期预计将存在 5 年以上,终极形态的激光雷达会是低成本、高度芯片化的产品。 固态激光雷达是终极形态,混合固态 MEMS 等方案短期内会是主流。机械式激光雷达技术本身成熟,但具有成本较高、装配调制困难、生产周期长,且需要持续旋转,机械部件的寿命较短,一般在1-2 年,很难应用在规模量产车型上。MEMS 混合固态激光雷达一方面具有尺寸小、可靠性高、批量生产后成本低、分辨率较高等优势,另一方面也存在信噪比低、有效距离短、视场角窄、工作寿命较短等缺点。MEMS 方案是当下车用激光雷达量产的最优解,但是 MEMS 微振镜扫描角度小、振动问题与工作温度范围,过车规也存在挑战。固态方案不用受制于机械旋转的速度和精度,可大大压缩雷达的结构和尺寸,提高使用寿命,并降低成本。 芯片化将会是激光雷达的架构趋势。当前大部分ToF 激光雷达产品采用分立器件,即发射端使用边发射激光器 EEL 配合多通道驱动器、接收端使用线性雪崩二极管探测器(APD)配合多通道跨阻放大器(TIA)的方案。但分立器件仍存在零部件多、生产成本高、可靠性低等问题,芯片化架构的激光雷达可将数百个分立器件集成于一颗芯片,在降低物料成本的同时,省去了对每一个激光器进行独立光学装调的人力生产成本。此外,器件数量的减少,可以显著降低因单一器件失效而导致系统失效的概率,提升了可靠性。芯片化架构的激光雷达是未来的发展方向。 激光雷达的成本构成。激光雷达本质是一个由多种部件构成的光机电系统,光电系统包括发射模组、接收模组、测时模组(TDC/ADC)和控制模组四部分构成,其中,光电系统成本约占激光雷达整机成本的 70%。 激光雷达上游产业链主要包括激光器和探测器、FPGA 芯片、模拟芯片供应商,以及光学部件生产和加工商。激光器和探测器是激光雷达的重要部件,激光器和探测器的性能、成本、可靠性与激光雷达产品的性能、成本、可靠性密切相关。激光器主流供应商有欧司朗、艾迈斯半导体、鲁门特姆,探测器主流供应商有滨松、安森美、索尼等。FPGA 通常被用作激光雷达的主控芯片,主流供应商有赛灵思、英特尔等,除了 FPGA 之外,也可以选用 MCU、DSP 等代替。MCU 的主流供应商有瑞萨、英飞凌等,DSP 的主流供应商有德州仪器、亚德诺半导体等。而在相关光学部件上,国内供应链已经完全实现替代海外,实现自主供应。 从各家的 Velodyne 的 64 线机械式激光雷达的售价在7.5 万美元,32 线的机械式激光雷达售价在 4 万美元左右,16 线的机械式激光雷达售价在3999 美元。而国内厂商,如禾赛科技在 2020 年发布的机械式激光雷达售价为4999 美元左右,速腾聚创在 2020 年发布的机械式激光雷达售价为 1898 美元。 随着相关技术和产业链日益成熟,激光雷达的成本拐点即将来临。Velodyne宣布计划到 2024 年将平均单价将下降到 600
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关搜索

当前位置:首页 > 大杂烩/其它


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号