资源描述
中国中国数学名人数学名人外国外国数学名人数学名人数学轶事数学轶事2021/4/81外国数学名人外国数学名人毕达哥拉斯毕达哥拉斯欧几里得欧几里得笛卡儿笛卡儿牛顿牛顿莱布尼兹莱布尼兹哥德巴赫哥德巴赫欧拉欧拉高斯高斯罗巴切夫斯基罗巴切夫斯基阿贝尔阿贝尔康托尔康托尔希尔伯特希尔伯特2021/4/82中国数学名人中国数学名人刘徽刘徽祖冲之祖冲之秦九韶秦九韶杨辉杨辉华罗庚华罗庚陈景润陈景润数学轶事数学轶事数学神童维纳的年龄数学神童维纳的年龄数学史上的一则数学史上的一则“冤案冤案”爱因斯坦谜语爱因斯坦谜语阿基米德群牛问题阿基米德群牛问题合理分配赌注问题合理分配赌注问题四色猜想四色猜想2021/4/83毕达哥拉斯学派有一种习惯,就是将一切发明都归于学派的领袖,而且秘而不毕达哥拉斯学派有一种习惯,就是将一切发明都归于学派的领袖,而且秘而不宣,以致后人不知是何人在何时所发明的。他们很重视数学,企图用数来解释一切。宣,以致后人不知是何人在何时所发明的。他们很重视数学,企图用数来解释一切。宣称数是宇宙万物的本源,研究数学的目的并不在于实用而是为了探索自然的奥秘。宣称数是宇宙万物的本源,研究数学的目的并不在于实用而是为了探索自然的奥秘。毕达哥拉斯本人以发现勾股定理毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理西方称毕达哥拉斯定理)著称于世。这定理早已为著称于世。这定理早已为巴比伦人和中国人所知,不过最早的证明大概可归功于毕达哥拉斯学派。这个学派巴比伦人和中国人所知,不过最早的证明大概可归功于毕达哥拉斯学派。这个学派还有一个特点,就是将算术和几何紧密联系起来,如把算术中的单位看作还有一个特点,就是将算术和几何紧密联系起来,如把算术中的单位看作“没有位置没有位置的点的点”,而把几何的点看作,而把几何的点看作“有位置的单位有位置的单位”。毕达哥拉斯(毕达哥拉斯(Pythagoras约公元前约公元前580约前约前500)古)古希腊哲学家、数学家、天文学家。生于萨摩斯(今希腊东部希腊哲学家、数学家、天文学家。生于萨摩斯(今希腊东部小岛),卒于他林敦(今意大利南部塔兰托)。早年曾游历小岛),卒于他林敦(今意大利南部塔兰托)。早年曾游历埃及、巴比伦等地。为了摆脱暴政,他移居意大利半岛南部埃及、巴比伦等地。为了摆脱暴政,他移居意大利半岛南部的克罗托内,在那里组织了一个政治、宗教、数学合一的秘的克罗托内,在那里组织了一个政治、宗教、数学合一的秘密团体。这个团体后来在政治斗争中遭到破坏,他逃到塔兰密团体。这个团体后来在政治斗争中遭到破坏,他逃到塔兰托,后终于被杀害。托,后终于被杀害。2021/4/84欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果整欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果整理收集起来,并且加以系统化,他从少数已被经验证明的公理出发,理收集起来,并且加以系统化,他从少数已被经验证明的公理出发,运用逻辑推理和数学运算的方法演绎出许多定理,写成了十三卷的运用逻辑推理和数学运算的方法演绎出许多定理,写成了十三卷的几何原本,使几何学成为一门独立的、演绎的科学。几何原本,使几何学成为一门独立的、演绎的科学。几何原本是古希腊科学的骄傲,它的基本原理和定理直到现在几何原本是古希腊科学的骄傲,它的基本原理和定理直到现在仍是科学教科书的一部分。仍是科学教科书的一部分。欧几里得欧几里得(公元前公元前330年前年前275年年)是古希腊是古希腊数学家,以其所著的几何原本闻名于世。关数学家,以其所著的几何原本闻名于世。关于他的生平,现在知道得很少。早年大概就学于于他的生平,现在知道得很少。早年大概就学于雅典,深知柏拉图的学说。公元前雅典,深知柏拉图的学说。公元前300年左右年左右,在在托勒密王的邀请下,来到亚历山大,并长期在那托勒密王的邀请下,来到亚历山大,并长期在那里工作。里工作。2021/4/85他主张彻底抛弃经院哲学的偏见,把数学上从明白无误的公理出发进他主张彻底抛弃经院哲学的偏见,把数学上从明白无误的公理出发进行推导的方法应用于哲学研究;提倡行推导的方法应用于哲学研究;提倡“普遍怀疑普遍怀疑”,从其名言,从其名言“我思故我在我思故我在”推定了精神主体的存在;同时也肯定物质世界的客观存在。认为在第一次推定了精神主体的存在;同时也肯定物质世界的客观存在。认为在第一次外力推动之后,物质就不断运动(机械运动),正是运动造成了物质的多外力推动之后,物质就不断运动(机械运动),正是运动造成了物质的多样性。他的哲学是充满矛盾的二元论和唯心主义的唯理论,其方法论强调样性。他的哲学是充满矛盾的二元论和唯心主义的唯理论,其方法论强调理性和逻辑推理而轻视经验。主要著作有:方法谈、形而上学的沉理性和逻辑推理而轻视经验。主要著作有:方法谈、形而上学的沉思、哲学原理。思、哲学原理。笛卡儿笛卡儿(Renescartes,15961650)法国法国哲学家、自然科学家。出身贵族家庭。少就读于拉哲学家、自然科学家。出身贵族家庭。少就读于拉弗累舍耶稣会学校和普瓦提埃大学。曾长期从军。弗累舍耶稣会学校和普瓦提埃大学。曾长期从军。16291649年隐居荷兰潜心著述。年隐居荷兰潜心著述。1649年应瑞典女年应瑞典女王之聘赴斯德哥尔摩,次年卒于该国。著有关于生王之聘赴斯德哥尔摩,次年卒于该国。著有关于生理学、心理学、光学、流星学、代数学和解析几何理学、心理学、光学、流星学、代数学和解析几何学的论文和专著,发明笛卡儿坐标和笛卡儿曲线,学的论文和专著,发明笛卡儿坐标和笛卡儿曲线,被认为是解析几何学的奠基人。被认为是解析几何学的奠基人。2021/4/86牛顿牛顿1661年入英国剑桥大学三一学院,年入英国剑桥大学三一学院,1665年获文学士年获文学士学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大多数重要科学创造的蓝图。多数重要科学创造的蓝图。1667年回剑桥后当选为三一学院院年回剑桥后当选为三一学院院委,次年获硕士学位。委,次年获硕士学位。1669年任卢卡斯教授直到年任卢卡斯教授直到1701年。年。1696年任皇家造币厂监督,并移居伦敦。年任皇家造币厂监督,并移居伦敦。1703年任英国皇家年任英国皇家学会会长。学会会长。1706年受女王安娜封爵。他晚年潜心于自然哲学与年受女王安娜封爵。他晚年潜心于自然哲学与神学。神学。牛顿在科学上最卓越的贡献是微积分和经典力学的创建。牛顿在科学上最卓越的贡献是微积分和经典力学的创建。牛顿,是英国伟大的数学家、物理学家、牛顿,是英国伟大的数学家、物理学家、天文学家和自然哲学家。天文学家和自然哲学家。1642年年12月月25日生日生于英格兰林肯郡格兰瑟姆附近的沃尔索普村于英格兰林肯郡格兰瑟姆附近的沃尔索普村,1727年年3月月20日在伦敦病逝。日在伦敦病逝。2021/4/87莱布尼兹(莱布尼兹(GottfriendWilhelmLeibniz,1646-1716)是)是17、18世纪之交德国最重要的数学家、物理世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。莱布尼兹可磨灭的贡献。莱布尼兹15岁进莱比锡大学法律系学岁进莱比锡大学法律系学习,习,20岁发表论文表述现代计算机理论,同年获得法岁发表论文表述现代计算机理论,同年获得法学博士学位。学博士学位。莱布尼兹于莱布尼兹于16731676年间发明了微积分,年间发明了微积分,1684年公布了论文;牛年公布了论文;牛顿于顿于16651666年间发明了微积分,年间发明了微积分,1687年公布在巨著自然哲学的数年公布在巨著自然哲学的数学原理中。微积分到底是谁发明的,这在世界科学史上曾是一桩公案。学原理中。微积分到底是谁发明的,这在世界科学史上曾是一桩公案。莱布尼兹在数学中引进了行列式,并把函数、常数、变量、坐标等基莱布尼兹在数学中引进了行列式,并把函数、常数、变量、坐标等基本概念奉献给数学。莱布尼兹还是中国古老文明的推崇者,他独立地发现本概念奉献给数学。莱布尼兹还是中国古老文明的推崇者,他独立地发现二进制计数法则,成为计算机基础理论的先驱。二进制计数法则,成为计算机基础理论的先驱。2021/4/88欧拉欧拉(Euler),瑞士数学家及自然科学,瑞士数学家及自然科学家。家。1707年年4月月15日出生於瑞士的巴塞尔,日出生於瑞士的巴塞尔,1783年年9月月18日於俄国彼得堡去逝。欧拉出日於俄国彼得堡去逝。欧拉出生於牧师家庭,自幼受父亲的教育。生於牧师家庭,自幼受父亲的教育。13岁岁时入读巴塞尔大学,时入读巴塞尔大学,15岁大学毕业,岁大学毕业,16岁岁获硕士学位。获硕士学位。欧拉是欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。他是数学史上最多产的数学家,更把数学推至几乎整个物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,无穷小分析引论、微分学原理、积分学变分法等的课本,无穷小分析引论、微分学原理、积分学原理等都成为数学中的经典著作。原理等都成为数学中的经典著作。欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。以他的名字命名的重要常数、公式和定理。2021/4/89哥德巴赫哥德巴赫哥德巴赫(哥德巴赫(GoldbachC.,1690.3.181764.11.20)是德国数学家;出生于格)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族识了贝努利家族,所以对数学研究产生了兴趣;曾担所以对数学研究产生了兴趣;曾担任中学教师。任中学教师。1725年到俄国,同年被选为彼得堡科年到俄国,同年被选为彼得堡科学院院士;学院院士;1725年年1740年担任彼得堡科学院会议年担任彼得堡科学院会议秘书;秘书;1742年移居莫斯科,并在俄国外交部任职。年移居莫斯科,并在俄国外交部任职。1729年年1764年,哥德巴赫与欧拉保持了长达三十年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在五年的书信往来。在1742年年6月月7日给欧拉的信中,日给欧拉的信中,哥德巴赫提出了一个命题。他写道:哥德巴赫提出了一个命题。他写道:2021/4/810我的问题是这样的:我的问题是这样的:随便取某一个奇数,比如随便取某一个奇数,比如77,可以把它写成三,可以把它写成三个素数之和:个素数之和:77=53+17+7;再任取一个奇数,比如再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,也是三个素数之和,461还可以写成还可以写成257+199+5,仍然是三个素数之和。这样,仍然是三个素数之和。这样,我发现:任何大于我发现:任何大于5的奇数都是三个素数之和的奇数都是三个素数之和。2021/4/811但这怎样证明呢?虽然做过的每一次试验都得到了上述但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。一般的证明,而不是个别的检验。欧拉回信说,这个命题看来是正确的,但是他也给不出欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个严格的证明。同时欧拉又提出了另一个命题:任何一个大于大于2的偶数都是两个素数之和。但是这个命题他也没的偶数都是两个素数之和。但是这个命
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关搜索