苏科版八年级上册数学全册教案完整版教学设计第一章 全等三角形1.1 全等图形1.认识全等图形,理解全等图形的概念与特征;2.能力目标:能欣赏有关的图案,并能指出其中的全等图形. 全等图形的概念和特征,认识全等图形. 在众多类似的图形中找出全等图形. 多媒体课件. 我们生活在丰富的图形世界,图形美化了我们的生活,我们曾走进图形世界进行研究、探索,今天我们将再次走进图形世界.(结合教材P6~P7)这一组几何图片中你们又发现什么?作用:通过观察、对比、分析,让学生对全等图形有一印象深刻的感性认识. 一、思考探究,获取新知1.请你说说全等图形的含义? 全等图形:能够完全重合的图形叫做全等图形.(简介全等多边形)2.刚才老师已经给大家出示几组全等图形,下面大家以小组为单位讨论这样两个问题:(1)你能说出生活中全等图形的例子吗?(2)观察下面两组图形,他们是不是全等图形?为什么?全等图形的性质:全等图形的形状相同、大小相同.说明:1.能够完全重合的图形叫全等图形. 形状和大小相同是全等图形的特征.因此要判断图形是否全等,应根据全等图形的定义或特征.2. 找出全等图形的方法:每一个图案其实是把一个基本的图形经过若干次旋转、平移、翻折而成的.二、典例精析,掌握新知拓展思考:(1)全等图形的周长、面积有怎样的关系?——相等(2)全等图形有没有什么不同的地方?——位置(3)全等图形若是多边形,你能得到什么结论?——对应边相等,对应角相等动手操作: 1.动手操作书P7.图形1中小鱼经过怎样的变换得到的?——由第1个图形向右平移7格得到的图形2中小鱼经过怎样的变换得到的? ——由第1个图形沿对称轴翻折得到的问题3中小鱼经过怎样的变换得到的? ——由第1个图形绕图中两个图形的公共点按逆时针旋转90°得到的3. 把正方形分成四个全等的图形,请设计三种图案. 通过学习,正确认识全等图形,理解全等图形的概念与特征;掌握全等图形识别方法. 教材P8练习第1,2题;习题1.1 第一章 全等三角形1.2 全等三角形1.认识全等三角形,能说出全等三角形的对应边、对应角; 2.掌握全等三角形的性质;3.通过观察、操作,进一步提高对图形的分析能力、发展空间观念. 全等三角形的性质. 确认全等三角形的对应元素. 多媒体课件 1. 什么是全等图形?全等图形有什么性质?2 . 全等图形可以经过怎样的图形变换得到?3. 如图,四个小三角形全等吗? 第3题4. 三角形有几个元素?分别是什么? 一、思考探究,获取新知1.如图,两个能重合的三角形叫做 .记作: .读作: .2. 两个全等三角形重合时,互相重合的顶点叫 ;互相重合的边叫做 ;互相重合的角叫做 .(记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上.全等三角形对应角所对的边是 ,对应边所对的角是 )3.全等三角形的性质:全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DFE,∴ = , = , = , = , = , = .说明:1.强调“对应”与书写格式;2. 全等三角形的周长、面积、对应角平分线、中线、高均相等;3. 可类推全等多边形.4. 动手操作:教材第9页(用两个直角三角板代替)结论:1.三角形通过平移、翻折、旋转等变化,得到的两个图形全等.2.图形的运动(平移、翻折、旋转)只改变图形的位置,不改变图形的形状、大小,运动前后两个图形全等.3.一个图形经过多次平移、翻折、旋转后,所得图形与原图形全等.二、典例精析,掌握新知例1 如图,△ABC≌△AEC,∠B=30°,∠ACB=85°.求出△AEC各内角的度数.【分析】解题策略——找全等三角形的对应元素(如何找).找准对应元素的方法:(1)对应角所对的边是对应边;对应边所对的角是对应角.(2)两个对应角所夹的边是对应边;两条对应边所夹的角是对应角。
3)全等图形中,一对最长(短)的边是对应边;一对最大(小)的角是对应角.【解】由题意,因为△ABC≌△AEC,∠B=30°,∠ACB=85°所以∠CAB=65°,所以在△AEC中,∠E=30°,∠ACE=85°,∠CAE=65°. 1. 识别全等三角形的对应边、对应角的关键是识别它们的对应顶点;2. 用图形运动的方法能有效地帮助我们识别复杂图形中的全等三角形 教材P12 习题1.2第1,2,3题 第一章 全等三角形1.3 探索全等三角形全等的条件课时1 边角边判定三角形全等1.掌握“边角边(SAS)”的内容,会运用“边角边(SAS)”来判定两个三角形全等;2.进一步掌握证明的书写规范; 3.初步掌握利用全等三角形来进一步说明线段或角相等. 掌握三角形全等的“边角边”条件. 正确运用“边角边”条件判定三角形全等,并能应用其解决实际问题. 多媒体课件. 1. 什么叫做全等三角形?全等三角形有什么性质?2. 如何找出全等三角形中的对应元素?3. 表示两个三角形全等时要注意什么问题?——对应若两个三角形全等,则它们的对应边、对应角相等;反之,当两个三角形有多少对应边或角分别相等时,这两个三角形全等? 一、思考探究,获取新知1. 一个三角形有6个元素,三边三角,用其中一个或两个画三角形,动手试试,看看你画的与别人画的是否一样?(1)一条边长为3; (2)一个角为60°; (3)一条边长为3,一个角为60°;(4)两条边长分别为3和4; (5)两角分别为30°和40°;(6)借用量角器和刻度尺画一个三角形,使其中一个角为40°,两邻边长分别为3和4.结论:三角形全等的条件:两边及夹角分别(对应)相等的两个三角形全等,简写成“边角边”或“SAS”.符号语言:如图,在△ABC和△DEF中, AB=DE, ∠A=∠D, AC=DF, ∴△ABC≌△DEF(SAS).二、典例精析,掌握新知例1 如下图,AB=AD,AC平分∠BAD,你能说明△ABC ≌△ADC吗?【分析】1. 初学时要强调解题的规范;2. 解题时:(1)在所找的全等条件中,有需要证明的,需先加以证明;(2)应写出在哪两个三角形中证明全等;(3)按基本事实(公理)的顺序列出3个条件,并大括号括起来;(4)要写出结论.【解】由题意,AB=AD,AC平分∠BAD,所以∠BAC=∠DAC,在△ABC和△ADC中, AB=AD, ∠BAC=∠DAC, AC=AC, ∴△ABC≌△ADC(SAS). 1.运用“边角边(SAS)”判定两个三角形全等,注意“边边角”不能判定两个三角形全等.2.判定两个三角形全等时,要注意使用公共边和公共角. 第一章 全等三角形1.3 探索全等三角形全等的条件课时2 角边角判定三角形全等1. 掌握“角边角(ASA)”的内容,会运用“角边角(ASA)”来判定两个三角形全等;2. 进一步规范几何推理的书写. 掌握三角形全等的“角边角”条件. 正确运用“角边角”条件判定三角形全等,并会应用其解决实际问题. 多媒体课件 1.判断三角形全等的方法有哪些?——定义、SAS.2.补出如图中残缺的三角形,能补几个?与其他同学补出的三角形全等吗?请说明理由. 画一个三角形△ABC,使得∠A=30°,∠B =50°,AB =2 cm.(请你把画出的三角形与同组比较,你有什么发现?) 一、思考探究,获取新知1. 用尺规作△ABC,使AB=a,∠A=∠1, ∠B=∠2.2. 三角形全等的条件2:两角及其夹边分别(对应)相等的两个三角形全等,简写成“角边角”或“ASA”.几何语言表述为:如图,在△ABC和△中,∴△ABC≌△(ASA).练习:填一填:已知:如图∠1=∠2,∠3=∠4.求证:△ABC≌△ABD.证明: ∵∠3=∠4(已知),∴180° -∠__ __=180° -∠_ ___,即∠ =∠ .在△ABC和△ABD中,∠____=∠_____,____=_____,∠____=∠_____,∴△ABC≌△ABD(ASA).二、典例精析,掌握新知例1 如图,在△ABC中,D是BC的中点,点E,F分别在AB,AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.【解】由题意,D是BC的中点,所以DB=DC,因为DE//AC,DF//AB,所以∠B=∠FDC,∠EDB=∠C,在∆BED和∆DFC中,∠B=∠FDC,DB=DC∠EDB=∠C,∴△BED≌△DFC(ASA).所以BE=DF,DE=CF. 1.用“角边角”判定两个三角形全等.2.用三角形全等来证明线段或角相等. 第一章 全等三角形1.3 探索全等三角形全等的条件课时3 角角边判定三角形全等1.掌握“角角边(AAS)”的内容,会运用“角角边(AAS)”来判定两个三角形全等;2.进一步提高有条理的思考和简单推理的能力. 掌握三角形全等的“角角边”条件. 正确运用条件判定三角形全等,并会应用其解决实际问题. 多媒体课件. 如图,在△ABC和△MNP中,∠A=∠M,∠B=∠N,BC=NP.△ABC与△MNP全等吗?为什么? 一、思考探究,获取新知教师提出问题:如果把“两角和它们的夹边分别相等”改为“两角及邻边分别相等”,即“两角分别相等且其中一组等角的对边相等”,两个三角形还全等吗?如图12-2-16,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.教师引导学生分析题目中的已知条件,让学生思考解题思路:如果能证明∠C=∠F,就可以利用“角边角”证明△ABC和△DEF全等,由三角形的内角和定理可以证明∠C=∠F.学生分小组交流想法,教师点评.师生共同完成证明过程,教师板书:证明:在△ABC中,∠A+∠B+∠C=180°,∴∠C=180°-∠A-∠B.同理∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA).教师:我们从这道例题可以得到两角分别相等且其中一组等角的对边相等。