(新高考)高考数学一轮考点复习5.3.1《平面向量的数量积》教案 (含详解)

举报
资源描述
第三节 平面向量的数量积及其应用 第1课时 系统知识牢基础——平面向量的数量积  知识点一 平面向量的数量积 1.向量的夹角 (1)定义:已知两个非零向量a和b,作=a,=b,则∠AOB就是向量a与b的夹角. (2)范围:设θ是向量a与b的夹角,则0°≤θ≤180°. (3)共线与垂直:若θ=0°,则a与b同向;若θ=180°,则a与b反向;若θ=90°,则a与b垂直. 2.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos θ,规定零向量与任一向量的数量积为0,即0·a=0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积. [提醒] (1)数量积a·b也等于b的长度|b|与a在b方向上的投影|a|cos θ的乘积,这两个投影是不同的. (2)a在b方向上的投影也可以写成,投影是一个数量,可正可负也可为0,它的符号取决于θ角的范围. 3.向量数量积的性质 设a,b是两个非零向量,e是单位向量,α是a与e的夹角,于是我们就有下列数量积的性质: (1)e·a=a·e=|a||e|cos α=|a|cos α. (2)a⊥b⇔a·b=0. (3)a,b同向⇔a·b=|a||b|; a,b反向⇔a·b=-|a||b|. 特别地a·a=|a|2=a2或|a|=. (4)若θ为a,b的夹角,则cos θ=. (5) |a·b|≤|a|·|b|. 4.谨记常用结论 (a±b)2=|a±b|2=|a|2±2a·b+|b|2=a2±2a·b+b2; a2-b2=(a+b)(a-b). 以上结论可作为公式使用. 5.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·λ(b)(结合律). (3)(a+b)·c=a·c+b·c(分配律). [提醒] 对于实数a,b,c有(a·b)·c=a·(b·c),但对于向量a,b,c而言,(a·b)·c=a·(b·c)不一定成立,即不满足向量结合律.这是因为(a·b)·c表示一个与c共线的向量,而a·(b·c)表示一个与a共线的向量,而a与c不一定共线,所以(a·b)·c=a·(b·c)不一定成立. [重温经典] 1.(教材改编题)设a,b是非零向量.“a·b=|a||b|”是“a∥b”的(  ) A.充分不必要条件      B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选A 设a与b的夹角为θ.因为a·b=|a|·|b|cos θ=|a|·|b|,所以cos θ=1,即a与b的夹角为0°,故a∥b. 当a∥b时,a与b的夹角为0°或180°, 所以a·b=|a|·|b|cos θ=±|a|·|b|, 所以“a·b=|a|·|b|”是“a∥b”的充分不必要条件. 2.已知向量a,b满足|a|=1,|b|=2,a与b的夹角的余弦值为sin,则b·(2a-b)等于(  ) A.2 B.-1 C.-6 D.-18 解析:选D ∵a与b的夹角的余弦值为sin=-, ∴a·b=-3,b·(2a-b)=2a·b-b2=-18. 3.已知a·b=-12,|a|=4,a和b的夹角为135°,则|b|的值为(  ) A.12 B.6 C.3 D.3 解析:选B 因为a·b=|a||b|cos 135°=-12, 所以|b|==6. 4.(易错题)已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________. 解析:由数量积的定义知,b在a方向上的投影为|b|cos θ=4×cos 120°=-2. 答案:-2 5.已知两个单位向量e1,e2的夹角为,若向量b1=e1-2e2,b2=3e1+4e2,则b1·b2=________. 解析:b1·b2=(e1-2e2)·(3e1+4e2)=3|e1|2-2e1·e2-8|e2|2.其中|e1|2=|e2|2=1,e1·e2=|e1|·|e2|·cos =1×1×=,所以b1·b2=-6. 答案:-6 6.如图,在△ABC中,AB=3,AC=2,D是边BC的中点,则·=________. 解析:·=(+)·(-+)=(-2+2)=-. 答案:- 知识点二 平面向量数量积的坐标表示 已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ. 结论 几何表示 坐标表示 模 |a|= |a|= 夹角 cos θ= cos θ= a⊥b的 充要条件 a·b=0 x1x2+y1y2=0 |a·b|与|a||b| 的关系 |a·b|≤|a||b| |x1x2+y1y2|≤ [重温经典] 1.(多选)设向量a=(2,0),b=(1,1),则(  ) A.|a|=|b| B.(a-b)∥b C.(a-b)⊥b D.a与b的夹角为 解析:选CD 因为a=(2,0),b=(1,1),所以|a|=2,|b|=,所以|a|≠|b|,故A错误;因为a=(2,0),b=(1,1),所以a-b=(1,-1),所以(a-b)与b不平行,故B错误;又(a-b)·b=1-1=0,故C正确;又cos〈a,b〉===,所以a与b的夹角为,故D正确. 2.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=________. 解析:∵2a-b=(4,2)-(-1,k)=(5,2-k), 由a·(2a-b)=0,得(2,1)·(5,2-k)=0, ∴10+2-k=0,解得k=12. 答案:12 3.已知向量a与b的夹角为60°,且a=(-2,-6),|b|=,则a·b=________. 解析:因为a=(-2,-6),所以|a|==2,又|b|=,向量a与b的夹角为60°,所以a·b=|a||b|cos 60°=2××=10. 答案:10 4.(易错题)向量a=(3,4)在b=(1,-1)方向上的投影为________. 解析:a在b方向上的投影为=-. 答案:- 5.(教材改编题)a,b为平面向量,已知a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于________. 解析:设b=(x,y),则2a+b=(8+x,6+y)=(3,18),所以解得故b=(-5,12),所以cosa,b==. 答案: 6.(易错题)已知向量a=(2,7),b=(x,-3),且a与b的夹角为钝角,则实数x的取值范围为____________________. 解析:由a·b=2x-21<0,得x<,当a与b共线时,=,则x=-,故x的取值范围为x<且x≠-. 答案:∪ 7.向量a=(1,2),b=(-1,1),若ka+b与b互相垂直,则实数k的值为________. 解析:∵ka+b=(k-1,2k+1),b=(-1,1),∴(ka+b)·b=(k-1)×(-1)+2k+1=k+2=0,k=-2. 答案:-2 5
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关资源
正为您匹配相似的精品文档
相关搜索

当前位置:首页 > 中学教育 > 高考


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号