数字电子技术教学课件第8章-数模与模数转换器

举报
资源描述
Analog Digital Converter and Digital Analog Converter8.1 D/A转换器8.2 A/D转换器8 模数与数模转换器3、正确理解D/A、A/D转换器的主要参数。1、掌握倒T形电阻网络D/A转换器(DAC)、集成D/A转换器的工作原理及相关计算。2、掌握并行比较、逐次比较、双积分A/D转换器(ADC)的工作原理及其特点。教学基本要求A/D 转换器 D/A 转换器 模拟 控制器 工业生产过程控制对象 模 拟 传感器 ADC和DAC已成为计算机系统中不可缺少的接口电路。将温度、压力、流量、应力等物理量转换为模拟电量。计算机进行数字处理(如计算、滤波)、保存等用模拟量作为控制信号数字控制 计算机概述8.1 D/A转换器8.1.1 D/A转换的基本原理8.1.2 倒T形电阻网络D/A转换器8.1.3 权电流D/A转换器8.1.4 D/A转换器的技术指标8.1.5 D/A转换器的应用将数字量转换为与之成正比模拟量。n位数字量1.概述DAC8.1 D/A转换器模拟量1、数/模转换器:A=K DO=K NB 数字量是用代码按数位组合而成的,对于有权码,每位代码都有一定的权值,如能将每一位代码按其权的大小转换成相应的模拟量,然后,将这些模拟量相加,即可得到与数字量成正比的模拟量,从而实现数字量-模拟量的转换。实现D/A转换的基本思想 NDb424b323b222b121b020 124123022021120将二进制数ND(11001)B转换为十进制数。8.1.1 D/A转换的基本原理7 D/A转换器的组成:DAC的数字数据可以并行输入并行输入也可串行输入串行输入用存放在数字寄存器中的数字量的各位数码由输入数字量控制产生权电流将权电流相加产生与输入成正比的模拟电压 实现D/A转换的原理电路,,D/A转换器的分类:按解码网络结构分类 T型电阻网络DAC倒T形电阻网络DAC权电流DAC 权电阻网络DAC 按模拟电子开关电路分类 CMOS开关型DAC双极型开关型DAC 电流开关型DAC ECL电流开关型DAC D/A 转换器8.1.2 倒T形电阻网络D/A转换器Di=0,Si则将电阻2R接地Di=1,Si接运算放大器反相端,电流Ii流入求和电路 电阻网络模拟电子开关求和运算放大器输出模拟电压输入4位二进制数根据运放线性运用时虚地的概念可知,无论模拟开关Si处于何种位置,与Si相连的2R电阻将接“地”或虚地。1、4位倒T形电阻网络D/A转换器基准电压 电阻网络 模拟电子开关 求和运算放大器D/A转换器的倒T形电阻网络基准电源VREF提供的总电流为:I=?流过各开关支路的电流:I3=?I2=?I1=?I0=?I/4I/8I/16RRRRI/2I/4I/8I/16I/2I3I2I1I0流入每个2R电阻的电流从高位到低位高位到低位按2的整数倍递减。I3=VREF/2RI2=VREF/4RI1=VREF/8R I0=VREF/16 R流入运放的总电流:i I0+I1+I2+I3输出模拟电压:4 位倒T形电阻网络DAC的输出模拟电压:n 位倒T形电阻网络DAC有:令:则O=K NB 在电路中输入的每一个二进制数NB,均能得到与之成正比的模拟电压输出。AD7533D/A转换器使用:1)要外接运放,2)运放的反馈电阻可使用内部电阻,也可采用外接电阻)2.集成D/A转换器10位CMOS电流开关型D/A转换器 关于D/A转换器精度的讨论(1)基准电压稳定性好;(2)倒T形电阻网络中R和2R电阻比值的精度要高;(3)为实现电流从高位到低位按2的整数倍递减递减,模拟开关的导通电阻也相应地按2的整数倍递增递增。为进一步提高D/A转换器的精度,可采用权电流型D/A转换器。为提高D/A转换器的精度,对电路参数的要求:(3)每个模拟开关的开关电压降开关电压降要相等Di=1时,开关Si接运放的反相端;Di=0时,开关Si接地。8.1.3 权电流D/A转换器1.4位权电流D/A转换器17在恒流源电路中,各支路权电流的大小均不受开关导通电阻和压降的影响,这样降低了对开关电路的要求,提高了转换精度。实际的权电流D/A转换器电路电压恒定各BJT的 发射结电压相等基准电流产生电路+-8位D/A转换器在单极性输出时的输入/输出关系000000001000000011111110000000011000000111111111模拟量 数字量MSB LSB常用双极性编码十十进进制制数数2的补码的补码偏移二进制码偏移二进制码模模拟拟量量D7D6D5D4D3D2D1D0D7D6D5D4D3D2D1D00/VLSB12701111111111111111271260111111011111110126 100000001100000011000000000100000000-11111111101111111-1 -1271000000100000001-127-1281000000000000000-128 *表中VLSB=VREF/256 8.1.5 D/A转换器的主要技术指标分辨率:其定义为D/A转换器模拟输出电压可能被分离的等级数。n位DAC最多有2n个模拟输出电压。位数越多D/A转换器的分辨率越高。分辨率也可以用能分辨的最小输出电压与最大输出电压之比给出。n位D/A转换器的分辨率可表示为1、分辨率2、转换精度:o转换精度是指对给定的数字量,D/A转换器实际值与理论值之间的最大偏差。o产生原因:由于D/A转换器中各元件参数值存在误差,如基准电压不够稳定或运算放大器的零漂等各种因素的影响。o几种转换误差:有如比例系数误差、失调误差和非线性误差等8.1.6 集成D/A转换器的应用(1)数字式可编程增益控制电路 D2 D7 O D0 D1 2R 2R 2R 2R R R R D8 D9 R R R I 2R 2R 2R-+RF IOUT1 IOUT 2 VREF D2 D7 OD0 D1 2R 2R 2R 2R R R R D8 D9 R R R I2R 2R 2R-+RF IOUT1 IOUT 2 VREF O-+R IOUT2I IOUT1 倒T形电阻网络OVIA=Iout1 I0+I1+I2+I9根据虚断有:(2)脉冲波产生电路74163具同步清零功能74163和与非门构成十进制计数器:000010018.2.6 集成A/D转换器及其应用8.2 A/D 转换器8.2.1 A/D转换的基本工作原理8.2.2 并行比较型A/D转换器8.2.3 逐次比较型A/D转换器8.2.4 双积分式A/D转换器8.2.5 A/D转换器的主要技术指标概述ADCDnD0输出数字量输入模拟电压能将模拟电压成正比地转换成对应的数字量。1.A/D功能:8.2 A/D 转换器2.A/D转换器分类 并联比较型 特点:转换速度快,转换时间 10ns 1s,但电路复杂。逐次逼近型 特点:转换速度适中,转换时间 为几s 100 s,转换精度高,在转换速度和硬件复杂度之间达到一个很好的平衡。双积分型 特点:转换速度慢,转换时间 几百s 几ms,但抗干扰能力最强。取样时间上离散的信号保持、量化量值上也离散的信号编码模拟信号时间上和量值上都连续数字信号时间上和量值上都离散8.2.1 A/D转换的一般工作过程 A/D转换器一般要包括取样,保持,量化及编码4个过程。1.取样与保持 采样是将随时间连续变化的模拟量转换为在时间离散的模拟量。采样信号S(t)的频率愈高,所采得信号经低通滤波器后愈能真实地复现输入信号。合理的采样频率由采样定理确定。采样定理:设采样信号S(t)的频率为fs,输入模拟信号I(t)的最高频率分量的频率为fimax,则 fs 2fimaxS(t)=1:开关闭合S(t)=0:开关断开采得模拟信号转换为数字信号都需要一定时间,为了给后续的量化编码过程提供一个稳定的值,在取样电路后要求将所采样的模拟信号保持一段时间。采样保持取样与保持电路及工作原理2.量化与编码数字信号在数值上是离散的。采样保持电路的输出电压还需按某种近似方式归化到与之相应的离散电平上,任何数字量只能是某个最小数量单位的整数倍整数倍。量化后的数值最后还需通过编码过程用一个代码表示出来。经编码后得到的代码就是A/D转换器输出的数字量。量化量化(归一,小数变整数)3.编码编码在量化过程中由于所采样电压不一定能被整除,所以量化前后一定存在误差,此误差我们称之为量化误差量化误差,用表示。量化误差属原理误差,原理误差,它是无法消除的。A/D转换器的位数越 多多,各离散电平之间的差值越小小,量化误差越小小。两种近似量化方式:只舍不入只舍不入量化方式和四舍五入四舍五入的量化方式。4.量化误差:量化前的电压与量化后的电压差5.量化方式011111101011000110100010000=0 v7=7/8 v6=6/8 v5=5/8 v4=4/8 v3=3/8 v2=2/8 v1=1/8 v输入信号编码量化后电压a)只舍不入量化方式:量化中把不足一个量化单位的部分舍弃;对于等于或大于一个量化单位部分按一个量化单位处理。最大量化误差为:最小量化单位1/8V=1LSB=1/8 V例:将01V电压转换为3位二进制代码b)四舍五入量化方式:量化过程将不足半个量化单位部分舍弃,对于等于或大于半个量化单位部分按一个量化单位处理。最大量化误差为:最小量化单位:011111101011000110100010000=0 v7=14/15 v6=12/15 v5=10/15 v4=8/15 v3=6/15 v2=4/15v1=2/15 v输入信号编码模拟电平=1LSB=2/15 V1/15V例:将01V电压转换为3位二进制代码8.2.2 并行比较型A/D转换器电压比较器输入模拟电压精密电阻网络精密参考电压VREF/153VREF/157VREF/159VREF/1511VREF/155VREF/1513VREF/15输出数字量1、电路组成VI=8VREF/151111000001 vI CO1 CO2 CO3 CO4 CO5 CO6 CO7 D2 D1 D0 7VREF/15 vI 9VREF/15 0 0 0 1 1 1 1 1 0 0 9VREF/15 vI 11VREF/15 0 0 1 1 1 1 1 1 0 1 5VREF/15 vI 7VREF/15 0 0 0 0 1 1 1 0 1 1 3VREF/15 vI 5VREF/15 0 0 0 0 0 1 1 0 1 0 11VREF/15 vI 13VR/15 0 1 1 1 1 1 1 1 1 013VREF/15 vI VREF/15 1 1 1 1 1 1 1 1 1 1 VREF/15 vI 3VREF/15 0 0 0 0 0 0 1 0 0 1 0 vI VREF/15 0 0 0 0 0 0 0 0 0 0 根据各比较器的参考电压值,可以确定输入模拟电压值与各比较器输出状态的关系。比较器的输出状态由D触发器存储,经优先编码器编码,得到数字量输出。3、电路特点:在并行并行A/D转换器中,输入电压I同时加到所有比较器的输入端。如不考虑各器件的延迟,可认为三位数字量是与I输入时刻同时获得的。所以它的转换时间最短。最短。缺点是电路复杂,如三三位ADC需7个比较器、7个触发器、8个电阻。位数越多,电路越复杂。为了解决提高分辨率和增加元件数的矛盾,可以采取分级并行转换的方法。单片集成并行比较型A/D转换器的产品很多,如AD公司的AD9012(TTL工艺8位)、AD9002(ECL工艺,8位)、AD9020(TTL工艺,10位)等。所加砝码重量 结果 8.2.3 逐次比较型A/D转换器逐次逼近转换过程与用天平称物重非常相似。第一次8 克砝码总重 待测重量Wx,8克砝码保留8 克第二次再加4克砝码总重仍 待测重量Wx,2克砝码撤除12 克第四次再加1克砝码总重 待测重量Wx,1克砝码保留13 克1.转换原理 所用砝码重量:8克、4克、2克和1克。设待秤重量Wx=13克。1
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关资源
正为您匹配相似的精品文档
相关搜索

当前位置:首页 > 高等教育 > 大学课件


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号