近代平差理论课件

举报
资源描述
序惯平差也叫逐次相关间接平差,它是将观测值分序惯平差也叫逐次相关间接平差,它是将观测值分成两组或多组,按组的顺序分别做相关间接平差,成两组或多组,按组的顺序分别做相关间接平差,从而使其达到与两期网一起做整体平差同样的结果。从而使其达到与两期网一起做整体平差同样的结果。分组后可以使每组的法方程阶数降低,减轻计算强分组后可以使每组的法方程阶数降低,减轻计算强度,现在常用于控制网的改扩建或分期布网的平差度,现在常用于控制网的改扩建或分期布网的平差计算,即观测值可以是不同期的,平差工作可以分计算,即观测值可以是不同期的,平差工作可以分期进行。本节的理论公式推导,以分两组为例。期进行。本节的理论公式推导,以分两组为例。81 序贯平差序贯平差一、序惯平差原理一、序惯平差原理设某平差问题,观测向量设某平差问题,观测向量 ,现把它分为,现把它分为 两两组,组内相关,组间互不相关,即:组,组内相关,组间互不相关,即:(8-1-1)按间接平差原理选取参数按间接平差原理选取参数 ,取近似,取近似 ,改正,改正数为数为 ,分组后两组的误差方程分别为,分组后两组的误差方程分别为权阵权阵(8-1-2a)权阵权阵(8-1-2b)(i=1、2)若按整体平差,误差方程可以写为若按整体平差,误差方程可以写为 权阵为权阵为 按间接平差原理可得其法方程为按间接平差原理可得其法方程为即即由上式可得由上式可得 按分组平差,先对第一组误差方程行第一按分组平差,先对第一组误差方程行第一次平差(因未顾及第二组观测值次平差(因未顾及第二组观测值 ,所以第,所以第一次平差只能得到一次平差只能得到 的第一次近似值,用的第一次近似值,用 表示)。函数模型可改写为表示)。函数模型可改写为 权阵权阵(8-1-3)按间接平差原理,可以直接给出公式,其法方程为按间接平差原理,可以直接给出公式,其法方程为未知参数的第一次改正数未知参数的第一次改正数(8-1-4)(8-1-5)未知参数的第一次平差值未知参数的第一次平差值(8-1-6)第一次平差后未知参数第一次平差后未知参数 的权阵为的权阵为(8-1-7)将将 代入(代入(8-1-3)式,得观测值)式,得观测值 的第一次改正数的第一次改正数 ,而,而 。再单独对第二组误差方程作第二次平差,此时,应再单独对第二组误差方程作第二次平差,此时,应把第一次平差后求得的参数把第一次平差后求得的参数 作为虚作为虚拟观测值参与平差,其权阵为拟观测值参与平差,其权阵为 误差方程为:误差方程为:(8-1-8)由上式知由上式知 其中其中称为参数的第二次改正数。称为参数的第二次改正数。联合第二组误差方程。即:联合第二组误差方程。即:(8-1-9)其中其中 或或 由(由(8-1-8)、()、(8-1-9)联合组成法方程为)联合组成法方程为即即(8-1-10)将上式代入(将上式代入(8-1-9)即可求得第二组观测值的整)即可求得第二组观测值的整体改正数。那么第一组观测值的第二次改正数如何求体改正数。那么第一组观测值的第二次改正数如何求呢?我们可以用呢?我们可以用 分别代替(分别代替(8-1-2)的的 ,即:,即:(8-1-11)由上式可得参数的第二次改正数为由上式可得参数的第二次改正数为因为经过第一次平差后,已使因为经过第一次平差后,已使成立,所以有成立,所以有(8-1-12)最后的平差值为:最后的平差值为:(8-1-13)(8-1-14)(8-1-15)下面给出精度评定公式。下面给出精度评定公式。单位权中误差估值:单位权中误差估值:(8-1-16)其中其中,推证如下:,推证如下:而而所以所以,但是但是并顾及并顾及 则有则有(8-1-17)未知参数的协因数阵:未知参数的协因数阵:(8-1-18)未知参数函数的协因数及中误差:未知参数函数的协因数及中误差:设有参数函数的权函数式:设有参数函数的权函数式:(8-1-19)(8-1-20)解:本题解:本题 ,选,选 两点高程平差值为未两点高程平差值为未知参数知参数 ,并取其近似值为:,并取其近似值为:,试按逐次间接平差法求,试按逐次间接平差法求 两两点高程的平差值及点高程的平差值及 点高程的中误差点高程的中误差?第一期同精度独立观测第一期同精度独立观测 ,第二期同精度独立观测第二期同精度独立观测 ,观测值为观测值为:例例8-1 如图如图8-1水准网,水准网,为已知点,为已知点,图图8-1h3CDAh1h2Bh4h5列立第一期误差方列立第一期误差方程程权阵权阵 写成写成的形式为的形式为组成法方程组成法方程解得参数的第一次改正数及其权阵解得参数的第一次改正数及其权阵求第一期观测值的第一次改正数求第一期观测值的第一次改正数 列立第二期误差方程列立第二期误差方程 ,可用第一期,可用第一期平差后的参数平差值直接列立,此时误差方程常平差后的参数平差值直接列立,此时误差方程常数项就是数项就是 ,即,即权阵权阵 写成矩阵形式写成矩阵形式 也可以用参数的初始近似值列出,此时的误差方程常数项也可以用参数的初始近似值列出,此时的误差方程常数项为为 ,即,即其中其中则误差方程可写为则误差方程可写为结果一样结果一样。顾及第一次平差结果,组成法方程顾及第一次平差结果,组成法方程即即求解参数的第二次改正数及平差值求解参数的第二次改正数及平差值计算第二期观测值的改正数计算第二期观测值的改正数计算单位权中误差计算单位权中误差计算计算C点高程平差值中误差,即参数的中误差点高程平差值中误差,即参数的中误差 二、序惯平差的三种特殊情况二、序惯平差的三种特殊情况1第二次平差增加新的参数第二次平差增加新的参数设两组的误差方程为设两组的误差方程为 权阵权阵(8-1-21)权阵权阵(8-1-22)式中式中 是共同的未知参数,是共同的未知参数,是新增加的未知参数。是新增加的未知参数。第一次平差可得:第一次平差可得:(8-1-23)(8-1-24)(8-1-25)第二次平差的误差方程为第二次平差的误差方程为 权阵权阵(8-1-26)权阵权阵(8-1-27)式中:式中:或或(8-1-28)(8-1-29)(8-1-30)解算法方程可得解算法方程可得 ,代入(,代入(8-1-27)可求得)可求得 。最后得参数平差值为最后得参数平差值为组成法方程为组成法方程为 2二次平差的参数仅是第一次平差参数的一部分二次平差的参数仅是第一次平差参数的一部分设两组的误差方程为:设两组的误差方程为:权阵权阵(8-1-31)权阵权阵(8-1-32)第一次平差的法方程为:第一次平差的法方程为:(8-1-33)(8-1-34)由法方程可求得由法方程可求得 ,其权阵为:,其权阵为:(8-1-35)二次平差的误差方程二次平差的误差方程权阵权阵(8-1-36)权阵权阵(8-1-37)式中:式中:或或 顾及(顾及(8-1-35)式,组成法方程如下:)式,组成法方程如下:(8-1-38)(8-1-39)由(由(8-1-38)式可得:)式可得:(8-1-40)将将 代入(代入(8-1-39)式,整理后得)式,整理后得 (8-1-41)式中式中(8-1-42)由(由(8-1-41)可解得)可解得 。参数的平差值为。参数的平差值为(8-1-43)(8-1-44)3上述两种情况的综合上述两种情况的综合两组的误差方程为:两组的误差方程为:权阵权阵 权阵权阵(8-1-45)(8-1-46)第一次平差与上述第二种情况完全相同,其法方程、第一次平差与上述第二种情况完全相同,其法方程、权阵、参数的第一次平差值等见(、权阵、参数的第一次平差值等见(8-1-33)、()、(8-1-34)、()、(8-1-35)式,其中)式,其中 的计算见(的计算见(8-1-42)式。)式。二次平差类似于第一种情况的第二次平差,二次平差类似于第一种情况的第二次平差,由下由下列法方程解得,常数项由(列法方程解得,常数项由(8-1-49)求得。)求得。(8-1-47)(8-1-48)其中其中 或或(8-1-49)按下式计算的值按下式计算的值(8-1-50)最后计算参数的平差值最后计算参数的平差值 (8-1-518-1-51)(8-1-52)(8-1-53)例例8-2 设有两组误差方程设有两组误差方程 为为 权阵权阵 权阵权阵试按逐次间接平差法求未知参数的平差值。试按逐次间接平差法求未知参数的平差值。解:本题符合第三种特殊情况,即符合如下形式:解:本题符合第三种特殊情况,即符合如下形式:即即第一次平差的法方程为:第一次平差的法方程为:即即其解为其解为未知参数的权阵为未知参数的权阵为第二次平差的法方程为第二次平差的法方程为即即其解为其解为而而参数的平差值为参数的平差值为即即8-2 秩亏自由网平差秩亏自由网平差v 在前面介绍的经典平差中,都是以已知的起算数在前面介绍的经典平差中,都是以已知的起算数据为基础,将控制网固定在已知数据上。如水准网据为基础,将控制网固定在已知数据上。如水准网必须至少已知网中某一点的高程,平面网至少要已必须至少已知网中某一点的高程,平面网至少要已知一点的坐标、一条边的边长和一条边的方位角。知一点的坐标、一条边的边长和一条边的方位角。当网中没有必要的起算数据时,我们称其为自由网,当网中没有必要的起算数据时,我们称其为自由网,本节将介绍网中没有起算数据时的平差方法,即自本节将介绍网中没有起算数据时的平差方法,即自由网平差。由网平差。v 在经典间接平差中,网中具备必要的起算数据,在经典间接平差中,网中具备必要的起算数据,误差方程为误差方程为(8-2-1)式中系数阵式中系数阵 为列满秩矩阵,其秩为为列满秩矩阵,其秩为 。在最小。在最小二乘准则下得到的法方程为二乘准则下得到的法方程为(8-2-2)由于其系数阵的秩为由于其系数阵的秩为 ,所以所以 为满秩矩阵,即为非奇异阵,具有凯利为满秩矩阵,即为非奇异阵,具有凯利逆,因此具有唯一解,即逆,因此具有唯一解,即(8-2-3)当网中无起算数据时,网中所有点均为待定点,当网中无起算数据时,网中所有点均为待定点,设未知参数的个数为设未知参数的个数为u,误差方程为,误差方程为(8-2-4)式中式中d为必要的起算数据个数。尽管增加了为必要的起算数据个数。尽管增加了d个参数,个参数,但但B的秩仍为必要观测个数,即的秩仍为必要观测个数,即其中其中B为不满秩矩阵,称为秩亏阵,其秩亏数为为不满秩矩阵,称为秩亏阵,其秩亏数为d。组成法方程组成法方程(8-2-5)式中式中 且且 所以所以N也为秩亏阵,秩亏数为:也为秩亏阵,秩亏数为:(8-2-6)由上式知,不同类型控制网的秩亏数就是经典由上式知,不同类型控制网的秩亏数就是经典平差时必要的起算数据的个数。即有:平差时必要的起算数据的个数。即有:在控制网秩亏的情况下,法方程有解但不唯一。在控制网秩亏的情况下,法方程有解但不唯一。也就是说仅满足最小二乘准则,仍无法求得的唯一也就是说仅满足最小二乘准则,仍无法求得的唯一解,这就是秩亏网平差与经典平差的根本区别。为解,这就是秩亏网平差与经典平差的根本区别。为求得唯一解,还必须增加新的约束条件,来达到求求得唯一解,还必须增加新的约束条件,来达到求唯一解的目的。秩亏自由网平差就是在满足最小二唯一解的目的。秩亏自由网平差就是在满足最小二乘乘 和最小范数和最小范数 的条件下,求的条件下,求参数一组最佳估值的平差方法。参数一组最佳估值的平差方法。下面将推导自由网平差常用两种解法的有关计算下面将推导自由网平差常用两种解法的有关计算公式。公式。一、直接解法一、直接解法根据广义逆理论,相容方程组根据广义逆理论,相容方程组 虽然虽然具有无穷多组解,但它有唯一的最小范数解,具有无穷多组解,但它有唯一的最小范数解,即:即:(8-2-7)式中式中 ,称为矩阵的最小范数,称为矩阵的最小范数g逆。逆。称为矩阵称为矩阵 的的g逆。代入(逆。代入(8-2-7)式得)式得(8-2-8)上式就是根据广义逆理论直接求解参数的唯一最上式就是根据广义逆理论直接求解参数的唯一最小范数解的公式。由于广义逆计算较为复杂,下小范数解的公式。由于广义逆计算较为复杂,下面将公式
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关资源
正为您匹配相似的精品文档
相关搜索

当前位置:首页 > 办公文档 > 教学/培训


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号