五年级奥数正式教材老师用[1]

举报
资源描述
智合教育……暑期蓝天行动 目录 目录 - 1 - (一) 数的整除 - 2 - (二) 数字谜 - 6 - ① 横式字谜 - 6 - ② 竖式字谜 - 8 - (三) 定义新运算 - 11 - (四) 行程问题 - 15 - ① 追击及遇问题 - 15 - ② 火车过桥 - 19 - (五) 列方程解应用题 - 22 - (六) 抽屉原理 - 27 - (七) 不规则图形面积计算(1) - 30 - (八) 不规则图形面积计算(2) - 34 - (九) 逻辑推理 - 39 - (十) 牛吃草 - 41 - (十一) 流水行船 - 45 - (十二) 奇数与偶数 - 47 - (十三) 周期性问题 - 52 - (十四) 植树问题 - 56 - (十五) 有趣的树阵图 - 59 - (十六) 有趣的树阵图练习 - 63 - (一) 数的整除 如果整除a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除a。如果a能被b整除,那么,b叫做a的约数,a叫做b的倍数。 数的整除的特征: (1) 能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。 (2) 能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。 (3) 能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。 (4) 能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。 (5) 能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。 (6) 能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。 (7) 能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。 (8) 能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。 一、 例题与方法指导 例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____. 思路导航: 一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能 23 0 56 0 或23 8 56 8 又 23056088=2620 23856888=2711 所以,本题的答案是2620或2711. 例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____. 思路导航: 因为36=94,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性. 所以,这个数的个位上的数最小是0. 例3. 下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已 991个 991个 知这个多位数被7整除,那么中间方框内的数字是_____. 思路导航: 33…3□44…4 991个 991个 =33…310993+3□410990+44…4 990个 990个 因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要 990个 990个 3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6. 例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____. 思路导航: 三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有 当和为33时,三个数是10,11,12; 当和为66时,三个数是21,22,23; 当和为99时,三个数是32,33,34. 所以,答案为 10,11,12或21,22,23或32,33,34。 [注]“三个连续自然数的和必能被3整除”可证明如下: 设三个连续自然数为n,n+1,n+2,则 n+(n+1)+(n+2) =3n+3 =3(n+1) 所以,能被3整除. 二、 巩固训练 1. 有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____. 2. 一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____. 3. 任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____. 4. 有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____. 1. 118 符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79. 所以,所求的和是39+79=118. 2. 195 因为这个数可以分解为两个两位数的积,而且1515=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数1313=169不合要求,1315=195适合要求.所以,答案应是195. 3. 9 根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能. 因为3456=3849,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下八种可能取值:9,18,27,36,45,54,63,72.从而A的各位数字之和B总是9,B的各位数字之和C也总是9. 4. 9 ∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9. 三、 拓展提升 1. 找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少? 2. 只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改? 3. 500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名? 4. 试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明. 答案 1. 如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2.我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除.再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7. 2. 因为225=259,要使修改后的数能被25整除,就要既能被25整除,又能被9整除,被25整除不成问题,末两位数75不必修改,只要看前三个数字即可,根据某数的各位数字之和是9的倍数,则这个数能被9整除的特征,因为2+1+4+7+5=19,19=18+1,19=27-8,所以不难排出以下四种改法:把1改为0;把4改为3;把1改为9;把2改为1. 3. 若将这500名士兵从右到左依次编号,则第一次报数时,编号能被5整除的士兵报1;第二次报数时,编号能被6整除的士兵报6,所以既报1又报6的士兵的编号既能被5整除又能被6整除,即能被30整除,在1至500这500个自然数中能被30整除的数共有16个,所以既报1又报6的士兵共有16名. 4. 不能. 假设能够按照题目要求在圆周上排列所述的100个数,我们来按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3 的倍数.从而一共有不少于40个数是3 的倍数.但事实上,在1至100的自然数中有33个数是3的倍数,导致矛盾. (二) 数字谜 小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”。这个地名第1个字可能是天。“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。这样谜底就出来了:天津。 算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示。文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。文字算式谜也是最难的一种算式谜。 在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。 ① 横式字谜 一、 例题与方法指导 例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。那么所填的3个数字之和是多少? 思路导航:150*3-8-97-5=340      所以3个数之和为3+4+5=12。 例2 在下列算式的□中填上适当的数字,使得等式成立:    (1)6□□4÷56=□0□,    (2)7□□8÷37=□1□,    (3)3□□3÷2□=□17,    (4)8□□□÷58=□□6。 分析:(1) 6104/56=109 (2)7548/37=204    (3) 3393/29=117    (4)8468/58=146 例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式。求其中的除数。 分析:40796/102=399...9
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关资源
正为您匹配相似的精品文档
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号