模拟电子技术课件第4章集成运算放大器电路

上传人:xian****812 文档编号:324059325 上传时间:2022-07-12 格式:PPT 页数:112 大小:1.85MB
返回 下载 相关 举报
模拟电子技术课件第4章集成运算放大器电路_第1页
第1页 / 共112页
模拟电子技术课件第4章集成运算放大器电路_第2页
第2页 / 共112页
模拟电子技术课件第4章集成运算放大器电路_第3页
第3页 / 共112页
模拟电子技术课件第4章集成运算放大器电路_第4页
第4页 / 共112页
模拟电子技术课件第4章集成运算放大器电路_第5页
第5页 / 共112页
点击查看更多>>
资源描述

《模拟电子技术课件第4章集成运算放大器电路》由会员分享,可在线阅读,更多相关《模拟电子技术课件第4章集成运算放大器电路(112页珍藏版)》请在金锄头文库上搜索。

1、第第4章章 集成运算放大器电路集成运算放大器电路第第4章章 集成运算放大器电路集成运算放大器电路 41 集成运算放大器的特点集成运算放大器的特点 42 电流源电路电流源电路 43 差动放大电路差动放大电路44 集成运算放大器的输出级电路集成运算放大器的输出级电路45 集成运放电路举例集成运放电路举例46 MOS集成运算放大器集成运算放大器47 集成运算放大器的主要性能指标集成运算放大器的主要性能指标第第4章章 集成运算放大器电路集成运算放大器电路41 集成运算放大器的特点集成运算放大器的特点 集成运放是一种多级放大电路,性能理想的运放应该具有电压增益高、输入电阻大、输出电阻小、工作点漂移小等特

2、点。与此同时,在电路的选择及构成形式上又要受到集成工艺条件的严格制约。因此,集成运放在电路设计上具有许多特点,主要有:(1)级间采用直接耦合方式。(2)尽可能用有源器件代替无源元件。(3)利用对称结构改善电路性能。第第4章章 集成运算放大器电路集成运算放大器电路关于集成电路的制造工艺见附录A。集成运放电路形式多样,各具特色。但从电路的组成结构看,一般是由输入级、中间放大级、输出级和电流源四部分组成,如图41所示。第第4章章 集成运算放大器电路集成运算放大器电路图41集成运算放大器组成框图第第4章章 集成运算放大器电路集成运算放大器电路42 电流源电路电流源电路 电流源对提高集成运放的性能起着极

3、为重要的作用。一方面它为各级电路提供稳定的直流偏置电流,另一方面可作为有源负载,提高单级放大器的增益。下面我们从晶体管实现恒流的原理入手,介绍集成运放中常用的电流源电路。第第4章章 集成运算放大器电路集成运算放大器电路一、单管电流源电路一、单管电流源电路图42(a)画出了晶体管基极电流为IB的一条输出特性曲线。由图可见,当IB一定时,只要晶体管不饱和也不击穿,IC就基本恒定。因此,固定偏流的晶体管,从集电极看进去相当于一个恒流源。由交流等效电路知,它的动态内阻为rce,是一个很大的电阻。为了使IC更加稳定,可以采用分压式偏置电路(即引入电流负反馈),便得到图42(b)所示的单管电流源电路。图4

4、2(c)为该电路等效的电流源表示法,图中Ro为等效电流源的动态内阻。利用图42(b)电路的交流等效电路可以证明,Ro近似为第第4章章 集成运算放大器电路集成运算放大器电路图42单管电流源电路(a)晶体管的恒流特性;(b)恒流源电路;(c)等效电流源表示法第第4章章 集成运算放大器电路集成运算放大器电路式中,RB=R1R2。需要指出,晶体管实现恒流特性是有条件的,即要保证恒流管始终工作在放大状态,否则将失去恒流作用。这一点对所有晶体管电流源都适用。(41)第第4章章 集成运算放大器电路集成运算放大器电路二、镜像电流源二、镜像电流源在单管电流源中,要用三个电阻,所以不便集成。为此,用一个完全相同的

5、晶体管V1,将集电极和基极短接在一起来代替电阻R2和R3,便得到图43所示的镜像电流源电路。由图可知,参考电流Ir为(42)由于两管的e结连在一起,所以IB相同,IC也相同。由图可知(43)第第4章章 集成运算放大器电路集成运算放大器电路图43镜像电流源第第4章章 集成运算放大器电路集成运算放大器电路如果11,则IC2Ir。可见,只要Ir一定,I2就恒定;改变Ir,IC2也跟着改变。两者的关系好比物与镜中的物像一样,故称为镜像电流源。将上述原理推广,可得多路镜像电流源,如图44所示。图中为三路电流源,V5管是为了提高各路电流的精度而设置的。因为在没有V5管时,IC1=Ir-4IB1,加了V5管

6、后,IC1=Ir-4IB1/(1+5),故此可得因此可得(43)第第4章章 集成运算放大器电路集成运算放大器电路因1(1+5)4容易满足,所以各路电流更接近Ir,并且受的温度影响也小。在集成电路中,多路镜像电流源是由多集电极晶体管实现的,图45(a)电路就是一个例子。它利用一个三集电极横向PNP管组成双路电流源(横向PNP管是采用标准工艺,在制作NPN管过程中同时制作出来的一种PNP管,详见附录A),其等价电路如图45(b)所示。(44)第第4章章 集成运算放大器电路集成运算放大器电路图44多路镜像电流源第第4章章 集成运算放大器电路集成运算放大器电路图45多集电极晶体管镜像电流源(a)三集电

7、极横向PNP管电路;(b)等价电路第第4章章 集成运算放大器电路集成运算放大器电路三、比例电流源如果希望电流源的电流与参考电流成某一比例关系,可采用图46所示的比例电流源电路。由图可知(45)因为所以(46)第第4章章 集成运算放大器电路集成运算放大器电路图46比例电流源第第4章章 集成运算放大器电路集成运算放大器电路即室温下,两管的UBE相差不到60mV,仅为此时两管UBE电压(600mV)的10%。因此,可近似认为UBE1UBE2。这样,式(45)简化为当两管的射极电流相差10倍以内时:若1,则IE1Ir,IE2IC2,由此得出(48)(47)第第4章章 集成运算放大器电路集成运算放大器电

8、路可见,IC2与Ir成比例关系,其比值由R1和R2确定。参考电流Ir现在应按下式计算:(49)第第4章章 集成运算放大器电路集成运算放大器电路四、微电流电流源四、微电流电流源在集成电路中,有时需要微安级的小电流。如果采用镜像电流源,Rr势必过大。这时可令图46电路中的R1=0,便得到图47所示的微电流电流源电路。由式(45)、(46)可知,在R1=0时:当1时,IE1Ir,IE2IC2,由此可得(410)第第4章章 集成运算放大器电路集成运算放大器电路图47微电流电流源第第4章章 集成运算放大器电路集成运算放大器电路此式表明,当Ir和所需要的小电流一定时,可计算出所需的电阻R2。例如,已知Ir

9、=1mA,要求IC2=10A时,则R2为如果UCC=15V,要使Ir=1mA,则Rr15k。由此可见,要得到10A的电流,在UCC=15V时,采用微电流电流源电路,所需的总电阻不超过27k。如果采用镜像电流源,则电阻Rr要大到1.5M。第第4章章 集成运算放大器电路集成运算放大器电路五、负反馈型电流源五、负反馈型电流源以上介绍的几种电流源,虽然电路简单,但有两个共同的缺点:一是动态内阻不够大,图48威尔逊电流源第第4章章 集成运算放大器电路集成运算放大器电路又(411)若三管特性相同,则1=2=3=,求解以上各式可得(412)第第4章章 集成运算放大器电路集成运算放大器电路可见,威尔逊电流源不

10、仅有较大的动态内阻,而且输出电流受的影响也大大减小。图49给出了另一种反馈型电流源电路。它由两个镜像电流源串接在一起组成,故称串接电流源。关于它的稳流原理留给读者自行分析。利用交流等效电路可求出威尔逊电流源的动态内阻Ro为(413)第第4章章 集成运算放大器电路集成运算放大器电路图49串接电流源第第4章章 集成运算放大器电路集成运算放大器电路六、有源负载放大器六、有源负载放大器集成运放要有极高的电压增益,这是通过多级放大器级联实现的。在电压增益一定时,为了减少级数,就必须提高单级放大器的电压增益。因此,在集成运放中,放大器多以电流源作有源负载。典型的有源负载共射放大电路如图410(a)所示。图

11、中,V2,V3管构成镜像电流源作V1管的集电极负载。由于该电流源的动态内阻为rce3,所以此时V1管的电压增益只需将共射增益表达式中的RC用rce3取代即可。当实际负载RL通过射随器隔离后接入,则该级放大器可获得极高的电压增益。第第4章章 集成运算放大器电路集成运算放大器电路图410有源负载放大器(a)共射电路;(b)具有倒相功能的共射电路第第4章章 集成运算放大器电路集成运算放大器电路图410(b)为另一种接法的有源负载共射电路。V3,V2管组成镜像电流源作V1管的有源负载,而输出取自恒流管V2的集电极。第第4章章 集成运算放大器电路集成运算放大器电路43 差动放大电路差动放大电路 431零

12、点漂移现象零点漂移现象单级共射放大器如图411所示。由前面讨论可知,在静态时,由于温度变化、电源波动等因素的影响,会使工作点电压(即集电极电位)偏离设定值而缓慢地上下漂动。第第4章章 集成运算放大器电路集成运算放大器电路图411放大器的零点漂移第第4章章 集成运算放大器电路集成运算放大器电路432差动放大器的工作原理及性能分析差动放大器的工作原理及性能分析基本差动放大器如图412所示。它由两个性能参数完全相同的共射放大电路组成,通过两管射极连接并经公共电阻RE将它们耦合在一起,所以也称为射极耦合差动放大器。第第4章章 集成运算放大器电路集成运算放大器电路图412基本差动放大器第第4章章 集成运

13、算放大器电路集成运算放大器电路首先来分析图412电路的静态工作点。为了使差动放大器输入端的直流电位为零,通常都采用正、负两路电源供电。由于V1,V2管参数相同,电路结构对称,所以两管工作点必然相同。由图可知,当Ui1=Ui2=0时:则流过RE的电流I为(414)第第4章章 集成运算放大器电路集成运算放大器电路可见,静态时,差动放大器两输出端之间的直流电压为零。下面分析差动放大器的动态特性。分析过程中特别提醒读者注意射极公共电阻RE的作用。故有(415)(416)(417)第第4章章 集成运算放大器电路集成运算放大器电路一、差模放大特性一、差模放大特性如果在图412差动电路的两个输入端加上一对大

14、小相等、相位相反的差模信号,即Ui1=Uid1,Ui2=Uid2,而Uid1=-Uid2。由图可知,这时一管的射极电流增大,另一管的射极电流减小,且增大量和减小量时时相等。因此流过RE的信号电流始终为零,公共射极端电位将保持不变。所以对差模输入信号而言,公共射极端可视为差模地端,即RE相当对地短路。第第4章章 集成运算放大器电路集成运算放大器电路通过上述分析,可得出图412电路的差模等效通路如图413所示。图中还画出了输入为差模正弦信号时,输出端波形的相位关系。利用图413等效通路,我们来计算差动放大器的各项差模性能指标。第第4章章 集成运算放大器电路集成运算放大器电路图413基本差动放大器的

15、差模等效通路第第4章章 集成运算放大器电路集成运算放大器电路1.差模电压放大倍数差模电压放大倍数差模电压放大倍数定义为输出电压与输入差模电压之比。在双端输出时,输出电压为输入差模电压为所以(418)式中,RL=RCRL。可见,双端输出时的差模电压放大倍数等于单边共射放大器的电压放大倍数。第第4章章 集成运算放大器电路集成运算放大器电路可见,这时的差模电压放大倍数为双端输出时的一半,且两输出端信号的相位相反。需要指出,若单端输出时的负载RL接在一个输出端到地之间,则计算Aud时,总负载应改为RL=RCRL。单端输出时,则(419)(420)或第第4章章 集成运算放大器电路集成运算放大器电路2.差

16、模输入电阻差模输入电阻差模输入电阻定义为差模输入电压与差模输入电流之比。由图413可得3.差模输出电阻差模输出电阻 双端输出时为(421)单端输出时为(422a)(422b)第第4章章 集成运算放大器电路集成运算放大器电路二、共模抑制特性二、共模抑制特性如果在图412差动放大器的两个输入端加上一对大小相等、相位相同的共模信号,即Ui1=Ui2=Uic,由图可知,此时两管的射极将产生相同的变化电流iE,使得流过RE的变化电流为2iE,从而引起两管射极电位有2REiE的变化。因此,从电压等效的观点看,相当每管的射极各接有2RE的电阻。第第4章章 集成运算放大器电路集成运算放大器电路通过上述分析,图412电路的共模等效通路如图414所示。利用该电路,现在来分析它的共模指标。1.共模电压放大倍数共模电压放大倍数双端输出时的共模电压放大倍数定义为当电路完全对称时,Uoc1=Uoc2,所以双端输出的共模电压放大倍数为零,即Auc=0。第第4章章 集成运算放大器电路集成运算放大器电路图414基本差动放大器的共模等效通路第第4章章 集成运算放大器电路集成运算放大器电路单端输出时的共模电压放大倍数定义为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号