自动聚焦压电激励系统的制作方法

上传人:ting****789 文档编号:310044995 上传时间:2022-06-14 格式:DOCX 页数:6 大小:25.91KB
返回 下载 相关 举报
自动聚焦压电激励系统的制作方法_第1页
第1页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《自动聚焦压电激励系统的制作方法》由会员分享,可在线阅读,更多相关《自动聚焦压电激励系统的制作方法(6页珍藏版)》请在金锄头文库上搜索。

1、自动聚焦压电激励系统的制作方法专利名称:自动聚焦压电激励系统的制作方法技术领域:本发明涉及在光学读取设备中成像,并且更为具体地,涉及在光学读取设备中自动聚焦目标图像的激励系统。本发明的多个方面都特别用于固态的、基于区域图像传感器的手持图像读取器,其可以定位于相对于目标图像可变的方向和距离。背景技术: 光代码是由具有不同光反射或光发射特性的图像区域组成的图案,其通常是根据先验规则而汇编的。“条形码”一词有时用于描述某些种光代码。光代码的光学特性和图像被选择用来从外表上将它们从使用它们的背景环境中区别出来。用于从光代码识别或提取数据的设备有时称为“光代码读取器”,其中条形码扫描仪是一种。光代码读取

2、器用于许多不同环境中的固定装置以及便携式装置,例如在商店中用于为服务结帐,在制造场所用于工作流程(work flow)和库存控制,以及在运输车辆上用于跟踪包裹处理。光代码也能够用作数据输入的普遍的快速方法,例如,通过从打印的许多条形码的列表中读取目标条形码。在一些使用中,光代码读取器连接于便携式数据处理设备或数据采集和传送设备。通常,光代码读取器包括一个手动地对准目标代码的手持传感器。多数传统光学扫描系统被设计为读取一维条形码符号。条形码是一种由固定或可变宽度间隔分开的可变宽度矩形条的图案。矩形条和间隔具有不同的光反射特性。一个一维条形码的例子是用于标识诸如产品明细的UPC/EAN代码。一个二

3、维代码或堆叠条形码的例子是PDF417条形码。对PDF417条形码的描述和对其编码的技术已在由Shellhammer等人转让给Symbol Technologies公司的美国专利号5,635,697中公开,并将其引入本文中以供参考。另一个传统的光代码被称为“MaxiCode”。MaxiCode由中心瞄准图案或靶心中心和围绕中心瞄准的一圈六边形组成。应该注意的是,在本专利申请中公开的本发明的多个方面通常可应用于光代码读取器,而不考虑他们所适合读取的特定类型的光代码。本文所描述的发明也可应用于图像识别和/或分析设备。多数传统扫描系统产生一束或多束激光,所述激光反射条形码符号并返回至扫描系统。系统获

4、得一个连续的模拟波形,所述波形对应于沿着系统的一个或多个扫描行的代码所反射的光。然后系统解码波形以从条形码中提取信息。例如,转让给Symbol Technologies公司的美国专利号4,251,798公开了这种一般类型的系统,其在此被引入本文中以供参考。而在转让给SymbolTechnologies公司的美国专利号5,561,283公开了一种用于检测和解码一维和二维条形码的激光束扫描系统,其被引入本文中以供参考。条形码也能够用成像设备来读取。例如可以使用具有二维单元阵列的图像传感器或与设备的视域内的图像元素或像素相对应的光电传感器(photosensor)。这种图像传感器可以是二维或区域电荷

5、耦合器件(CCD)以及用于产生对应于观察区的二维像素信息阵列的电信号的相关电路。目前所使用的许多扫描仪使用扫描激光束。一些这种系统用于可以手动对准目标的手持单元中。通常一个单独的扫描仪是包括其他扫描仪,计算机,电缆,数据终端等的更大系统的一个组件。这种系统通常是基于扫描引擎的机械或光学规格(有时称为“波形因数(form factor)”)而设计并构造的。一个这种波形因数是由Symbol Technologies公司使用的SE1200波形因数。由于当前波形因数利用较小维数来规定扫描引擎引擎,所以有必要提供一种小型成像引擎,其能够代替在目前设计并使用的光代码读取器系统中的传统激光行扫描引擎。还有另

6、一个需要就是提供一种成像引擎所述成像引擎能够代替在当前设计并使用的光代码读取系统中的波形因数扫描引擎引擎以提高这种系统的可靠性,通用性和目标工作范围。在光代码读取器中使用CCD光电检测器和物镜组件是本领域所公知的。过去,这种系统曾采用原始设计用于相对昂贵的视频成像系统中的复杂物镜组件。这种透镜组件通常使用多个大直径非球面的透镜元件。在美国专利号5,703,349中示例了在代码读取器中的非球面透镜元件和CCD光电检测器的使用。非球面透镜系统是相对昂贵并难于构建的。它们也具有单个锐聚焦和有限的区域深度,与传统的对准,照明(illumination)和信号处理以及解码算法一起限制了系统的通用性和工作

7、范围。Symbol Technologies公司已经研发了用于条形码扫描仪的双稳态高速区域采集(zone collection)系统。在美国专利号5,798,515和5,821,522中公开了这些系统,其使用可移动到扫描仪(嵌入光学系统)的输入光学路径中的透镜结构。Symbol Technologies公司还研发了一种易于构造并且经济的用于成像光代码读取器的物镜组件。美国专利号6,340,114B1公开了这种组件,其内容并入本文中以供参考。所述114专利也公开了一种光代码读取器,能够用于以远距离读取代码。另外,114专利也公开了一种成像光代码读取器,具有可选的视域和视图的工作深度以适应读取器的

8、信号处理和解码能力。然而,尽管对现有技术作出了改进,但是仍需要这种系统这种系统足够小以符合最近的波形因数规格,同时又能提供现存系统中可以发现的相同或更高程度的通用性和性能。发明内容因此,为了解决现有技术中的问题,本发明涉及用于自动聚焦光学图像读取器的激励系统。并公开了可应用于与各种类型的图像读取器相关的成像引擎和成像透镜系统的设计的技术。更为具体地,本发明涉及用于自动聚焦与成像系统相关的物镜的激励系统。本发明的一个目的在于提供一种微型成像引擎,其能够代替目前设计并使用的光代码读取系统中的传统激光行扫描引擎。本发明的另一个目的在于提供一种成像引擎,其能够代替目前设计并使用的光代码读取系统中的波形

9、因数扫描引擎,以提高这种系统的可靠性,通用性和目标工作范围。本发明的另一个目的在于提供一种易于构造并且经济的用于自动聚焦成像光代码读取器的可移动物镜组件。本发明的另一个目的在于提供几个激励组件实例,以便沿着透镜导向组件移动物镜组件以自动聚焦成像光代码读取器。本发明的另一个目的在于提供一种具有装配了物镜组件的成像引擎的成像光代码读取器,所述物镜组件能够沿着透镜导向组件移动以自动聚焦成像光代码读取器。本发明的另一个目的在于提供一种可移动物镜组件,根据已确定的透镜组件的聚焦质量沿着透镜导向组件移动,以自动调整成像光代码读取器的聚焦质量。上述的一些或所有目的都可以在单个光代码读取引擎或系统中实现。加上

10、适当的控制电路和数据处理软件,系统又可以构造为实现产生一个可以代替现有行扫描引擎的小型制造经济的成像引擎的目的。可以使引擎适用于许多不同的环境,利用多个光场和焦距以便读取多个不同大小的代码。系统也可以用于图像识别或分析,包括获取关于目标及其环境的数据。为了更好的理解本发明,参考对优选实施例的以下描述以及附图,其中图1是本发明成像引擎的优选实施例的简化功能框图;图2是示例根据本发明实施例使用的处理设备的框图;图3是根据本发明实施例的透镜和激励组件的剖面图;图4A和4B是根据本发明实施例的激励组件的剖面图;以及图5A和5B是根据本发明另一个实施例的激励组件的剖面图。具体实施例方式现在参照附图进行详

11、细描述,其中在几幅视图中,相同的附图标记表示相似或相同的元件,并从附图1开始,显示了根据本申请公开内容而构造的一个成像引擎110的实施例。更为具体地,图1是本发明成像引擎110的优选实施例的功能框图,示例了成像引擎的一些元件的配置。包括成像子系统和解码子系统的电子硬件通常由标记为“控制和逻辑电路”的方块112表示。双向箭头114示例了图像传感器116和控制逻辑电路112之间的信号传送。图像传感器116通过物镜组件118接收光学图像信息。进一步如图1中所示,照明源120和激励器组件122可以由控制逻辑电路112提供的信号控制。成像引擎110能够被解码(如图1所示)或不解码以产生原始视频流。在不解

12、码的情况下,引擎可以作为要集成到执行解码的设备中的一个元件出售。在一个优选实施例中,图像传感器是一个电荷耦合设备(CCD)。然而,要理解的是,其他区域图像传感器也可以用于预期的目的,例如CMOS,CMD(电荷调制设备)或CID(电荷注入设备)传感器。本发明的优选实施例可以包括用于处理和解码从图像传感器116接收到的图像数据的电路和/或软件。图像传感器产生电信号,所述电信号通常相应于目标图像的像素信息的二维像素组。该数据由基于电路/软件的系统进行分析以确定黑和白临界信息。像素数据被分为子图像,例如,3232像素的子图像。分析这些子图像以获得已知与多种类型的光代码相关的特性以及已知从从背景(非代码

13、)图像中区分其他代码和特定代码的特性。提供具有至少一个透镜的透镜组件118以将入射光聚焦在图像传感器116上。透镜组件118可沿着透镜导向组件124移动以改变后焦距。适用于本发明的成像引擎的优选实施例的物镜组件118可以包括包含至少一个透镜元件的圆柱形外壳。透镜元件可以卡锁安装在圆柱形外壳中以将透镜保持在公共光轴的位置上。在优选实施例中,透镜组件118在多个位置之间自动移动以自动聚焦要成像的物体,例如条形码。当透镜组件118移动时,透镜导向组件124导向并支持透镜组件118以在成像物体之前自动聚焦物体。激励组件122优选地将近处的或远处的运动告知透镜组件118,以便分别将透镜组件远离或朝向物体

14、移动。因此,透镜组件118的运动量取决于激励组件122激励的时间量乘以透镜组件118移动给定单元时间的距离(速度)。优选地,在确定了成像装置和要成像的物体之间的距离之后启动激励组件122。转让给Symbol Technologies公司的美国专利号6,340,114B1公开了能够用于确定本发明的成像装置和物体之间的距离的一种距离确定方法。该方法涉及使用一种成像光代码读取器的对准系统以测量到目标图像的距离。其他距离确定方法也可以用于确定成像装置和要成像的物体之间的距离,例如,于2003年4月29日申请的一并待决的美国专利申请序列号10/425,499中公开的方法,将其引入本文当中以供参考。然后,

15、由处理系统将确定的到物体的距离与相对固定参照点(例如,透镜导向组件的特定点,诸如中心点)的透镜导向组件124的具体或大约位置相关联。然后,与成像装置通信的处理系统确定相对固定参照点透镜组件需要移动到透镜导向组件的具体或大约位置的距离大小。为了执行该计算,处理系统考虑相对固定参考点的透镜组件118的参考点的最后存储的位置。不考虑偶然的需要通过手动或自动将透镜组件的当前位置设置在相对规定参考点的已知位置来校准成像装置,透镜组件118的参考点的最后存储的位置就等同于相对固定参考点的透镜组件118的参考点的当前位置。最后记录的或当前的位置是由处理系统不断地计算透镜组件118的参考点相对固定参考点移动的

16、距离量而确定的。例如,在成像装置的初始生产设置或校准之后,透镜组件118的参考点位于与固定参考点同一平面上,或位于距离固定参考点已知距离的位置,例如距离固定参考点尽可能远的位置。之后,在成像装置操作过程中,透镜组件118沿着透镜导向组件124移动以自动聚焦成像装置。在激励组件122每次激励的过程中,透镜组件沿着轴向前或向后所移动的距离会由处理系统分别增加或减小到先前记录的数。例如,如果透镜组件118的初始位置标识为位置零(优选地该初始位置等同于与固定参考点相同平面的透镜组件的参考点)并且在激励组件激励一预定时间周期以参照固定参考点将透镜组件移动+0.11mm(例如,朝向要成像的物体0.11mm)之后,处理系统将零和+0.11相加以将透镜组件的参考点的新位置确定为距离固定参考点+0.11mm。该位置由处理系统存储并称为透镜组件118的参考点的最后存储位置或上述的参考点的当前位置。激励组件的预定激励时间周期是由处理系统根据透镜组件基于成像

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号