直流对直流升压转换装置及方法

上传人:ting****789 文档编号:310033482 上传时间:2022-06-14 格式:DOCX 页数:4 大小:20.11KB
返回 下载 相关 举报
直流对直流升压转换装置及方法_第1页
第1页 / 共4页
亲,该文档总共4页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《直流对直流升压转换装置及方法》由会员分享,可在线阅读,更多相关《直流对直流升压转换装置及方法(4页珍藏版)》请在金锄头文库上搜索。

1、直流对直流升压转换装置及方法专利名称:直流对直流升压转换装置及方法技术领域:本发明是关于一种直流对直流升压转换装置及方法,尤指一种以脉冲频率调制(Pulse Frequency Modulation;PFM)技术为基础的直流对直流升压转换装置及方法,特别适合在低电压及低电流下操作。背景技术: 近年来,消费性电子产品如掌上型个人数字助理、智能型移动电话、随身听等,无不以获得更长的使用时间为发展方向。电池便是为了适应续航力与可移植性而有多样性发展。但电池容量有限,因此如何有效率地使用电池将更为重要。当系统内部组件所需的电流日益降低的同时,PFM转换器(PFMConverter)俨然成为低负载低电流

2、的最佳解决方案。一般利用PFM技术来实现升压转换器有两种方式第一种方式是利用一误差放大器(Error Amp)的输出信号大小来控制一电压控制振荡器(Voltage-Controlled Oscillator;VCO)的输出频率,该VCO设计成具有固定的开启时间(on-time)和可调整的关闭时间(off-time)。其缺点是该误差放大器的频率需要补偿,若该补偿电路制作在该误差放大器内,则该误差放大器芯片面积势必加大。若该补偿电路由外部提供,则该误差放大器必须多出一支接收补偿信号的脚位。参照图1,PFM技术实现升压转换器的第二种方式是利用一比较器11(comparator)的输出来控制一环形振荡

3、器12(ring oscillator)的输出方波。该输出方波再经一缓冲器13驱动一升压电路14。该升压电路14的输出信号经由一反馈线路15及分压电阻R10、R20产生一反馈信号FB0输入该比较器11。此方式的主要的缺点为当输出电压Vout达到稳定时,当外部的负载突然变小时,此时储存在电感L中的能量将释放至负载,容易引起噪声。该噪声经反馈至比较器11时,将造成比较器11的输出信号跳动,使得原本环形振荡器的输出方波变形,进而造成输出信号的涟波(ripple),而影响电力的品质。另外为了达到PFM升压转换器可以线性操作,必须要求该环形振荡器12的输出方波具有固定的开启时间。若最后一个方波输出时,因

4、由电感L所释放的能量过高造成直流输出电压过高,经由反馈线路15、比较器11至环形振荡器12后,将该方波从中截掉(即开启时间较短),使得输出的能量减少。此时若外部负载仍继续消耗能量时,将造成输出能量不足,使得直流输出电压Vout下降,因此形成涟波的现象。发明内容本发明的目的是提供一种直流对直流升压转换装置及方法,藉由增加一逻辑控制单元,以降低该转换装置直流输出电压的涟波而提高电力品质。为达到上述目的,本发明揭示一种直流对直流升压转换装置,其包含一升压电路、一环形振荡器、一分压电路、一PFM比较器及一逻辑控制单元。该升压电路包含一电感、一二极管、一输出电容和一金氧半场效晶体管(Metal-Oxid

5、e-Semiconductor Field Effect Transistor;MOSFET),用以将一工作电压进行升压以产生一直流输出电压。该环形振荡器是用以产生一振荡器输出信号。该分压电路包含二电阻,是针对该直流输出电压进行分压以产生一反馈电压。该PFM比较器比较该反馈电压及一参考电压以产生一比较器输出信号,用以控制该振荡器输出信号的输出。该逻辑控制单元是包含一自动重置单元及一信号保持单元,用以使得该振荡器输出信号的开启时间实质相等于该升压电路的导通时间,且可减少噪声及降低该直流输出电压的涟波。就实施步骤而言,首先提供一振荡器输出信号,且将一工作电压进行升压以产生一直流输出电压。针对该直流

6、输出电压经由一反馈线路进行反馈及分压以产生一反馈电压。比较该反馈电压及一参考电压以产生一比较器输出信号,其中该比较器输出信号是用以控制该振荡器输出信号的输出。控制该振荡器输出信号的开启时间与该升压电路导通时间实质相同,藉以降低噪声、涟波,进而增加装置的稳定性。本发明的直流对直流升压转换装置是利用PFM技术且特别符合低电压和低电流的需求,其可在约0.9V时激活,工作电压可低至约1.4V,且静态的总电流也仅约20mA。因此本发明的直流对直流升压转换装置可应用于便携式影音设备和移动通讯设备等要求长时间使用、低工作电压、低耗功率和不受温度影响的电子产品。图1是一现有的直流对直流升压转换装置示意图;图2

7、是本发明的一实施例的直流对直流升压转换装置的系统方块图;图3例示本发明直流对直流升压转换装置的升压电路图;图4例示本发明直流对直流升压转换装置的环形振荡器和信号保持单元的电路图;图5(a)和5(b)是本发明直流对直流升压转换装置的环形振荡器的输出信号时序图;图6例示本发明直流对直流升压转换装置的PFM比较器及自动重置单元的电路。图中主要组件符号说明1 直流对直流升压转换装置10 升压电路 11 比较器12 环形振荡器 13 缓冲器14 升压电路 15 反馈线路16 缓冲器 17 外部负载18 反馈线路 19 电流限制电路20 逻辑控制单元 21 自动重置单元22 信号保持单元30 环形振荡器

8、31 切换单元40 PFM比较器50 分压电路102 MOS晶体管211 NMOS晶体管221 反相器 311 NMOS晶体管具体实施方式图2是本发明的一优选实施例的直流对直流升压转换装置1的功能方块图及其中部分电路,其包含一升压电路10、一逻辑控制单元20、一环形振荡器30、一PFM比较器40、一分压电路50、一电流限制电路19及一缓冲器16。该环形振荡器30用以产生连续方波,而方波的输出是由该PFM比较器40藉由一反馈信号FB与一参考电压Vref比较加以控制。该逻辑控制单元20用于减低噪声的影响和减少输出电压Vout的涟波,以增加装置的稳定性。该电流限制电路19连接至该升压电路10的端点L

9、X,用以实时检测端点LX的节点电压。当该节点电压大于内部设定值时,即判定流经该升压电路10的MOS晶体管(参图3的编号102的组件)的电流过大。一旦电流过大,电流限制电路19立即关闭该MOS晶体管以避免烧毁。该升压电路10的输出信号Vout连接至一外部负载17且利用一反馈线路18传送至该分压电路50进行分压处理,以产生信号FB。藉由信号FB与参考电压Vref的比较,以决定是否继续调制频率。图3例示该升压电路10的一实施例,其包含一电感L、一二极管D、一电容Co和一MOS晶体管102,用以将工作电压VDD进行升压,以产生一直流输出电压Vout。在该MOS晶体管102导通的状态下,该二极管D为反向

10、偏压,此时该电感L上两端的跨压为VDD,因此导致流过电感L的电流是呈线性地增加。当该MOS晶体管102在导通的状态下,输出的电流完全由电容Co所提供。当MOS晶体管102为截止时,而在电感L上的电压极性会瞬间被反转,也使得该二极管D为顺向偏压而导通,因此电感L释放其所储存的能量给电容Co,这股能量提供了负载电流,并为输出电容Co再次进行充电。直流输出电压Vout的大小由分压电路50中分压电阻R10、R20两者所决定。图4例示一优选实施例的环形振荡器30的电路图,其中采用该环形振荡器30是为了能在低工作电压下操作。该环形振荡器30包含一第一电容器C1、一第二电容器C2和一切换单元31。包含于该逻

11、辑控制单元20的一信号保持单元22连接该切换单元31,藉以控制该环形振荡器的开、关,进而确保该MOS晶体管102的开启时间且防止烧毁。来自PFM比较器40输出的COUT信号(参图2)经一反相器221反相后与来自环形振荡器30的保持触发信号TH一并输入该信号保持单元22,并产生一触发信号FT输入该切换单元31。于本实施例中,该信号保持单元22为一重置-设定锁存器(Reset-Set latch;RS latch)。该切换单元31包含三个NMOS晶体管311且该三个NMOS晶体管311的汲极(drain)分别连接至该环形振荡器30的a、b、c三点。信号保持单元22输出的触发信号FT是传输至该三个N

12、MOS晶体管311的闸极。当FT为高位准时,该环形振荡器30关闭,即不进行工作,而当FT为低位准时,该环形振荡器30则为正常操作状态。当该NMOS晶体管311为截止时,其中的信号SO1、SO2及一振荡器输出信号OOUT均为连续方波。该第一和第二电容器C1是用以分别决定SO1、SO2和OOUT的关闭时间和开启时间的大小。参照图5(a),以OOUT为例说明,在适当选择电容C1、C2的电容值后,使得OOUT的开启时间(即脉宽)为8s(微秒),关闭时间为2s。同理SO1及SO2的开启时间和关闭时间亦分别由C2和C1控制。参照图5(b),当该转换装置1的直流输出电压Vout已经穏定时,若外部负载17突然

13、降低时,则直流输出电压Vout经由反馈线路18、分压电路50,反馈到该PFM比较器40时,且与参考电压比较之后,为缩小输出量,使得OOUT在开启时间未结束前(时间点T),即将信号由高位准降到低位准,因此造成OOUT的脉宽(即开启时间)缩短,导致OOUT的脉宽无法固定,影响该转换装置1的线性操作。为了使OOUT具有固定的开启时间,必须适时地控制该环形振荡器30。利用连接信号保持单元22与环形振荡器30中的切换单元31(参图4),并接收该比较器40的输出信号COUT及保持触发信号TH,以确保OOUT在经过开启时间(8s)的时间长度后,才导通三个NMOS晶体管311将a、b、c三点的电压位准强制拉至

14、低位准,即无连续方波输出,藉此确保升压电路10中MOS晶体管102的导通时间始终为OOUT的开启时间,以增加该转换装置1的穏定性,也可减少输出电压Vout的涟波。再参照图2,由转换装置1的输出信号Vout经由分压电路50中的分压电阻R1和R2产生信号FB,并与参考电压Vref比较,藉此控制图3所示的电感L储存与释放能量。在环形振荡器30稳定的情形下,能量的储放是否线性,乃取决于PFM比较器40对噪声抑制的特性。应用在低电流电路上,转换装置1的输出端转态产生的噪声往往会干扰参考电压Vref,使得PFM比较器40输出端呈现不穏定的状态,造成升压电路10中的MOS晶体管102瞬间开关数次,不但因此降

15、低效率,也使直流输出电压Vout产生较大的涟波。图6是表示该PFM比较器40及包含于该逻辑控制单元20的一自动重置单元21的一电路实施例。该自动重置电路21是利用来自该环形振荡器30的第二振荡器输出信号SO2以控制该PFM比较器40的运作。该自动重置电路21以一NMOS晶体管211为实施例时,该NMOS晶体管211的汲极连接该PFM比较器40的端点CS,其闸极接收信号SO2。当SO2信号为高位准时,该PFM比较器40将被关闭。此时将强制把PFM比较器40关闭而自动重置,以减小噪声对PFM比较器40的干扰,藉此减少上述的噪声问题并减少输出电压Vout的涟波。再参照图2,综上所述,该转换装置1利用

16、PFM比较器40的输出值COUT来决定环形振荡器30的第三振荡器输出信号OOUT的频率,再利用信号OOUT的波形(即高低位准)来控制升压电路10中的MOS晶体管102导通与截止的时间,以决定电感L所储存及释放能量的大小,并将直流输出电压Vout反馈至分压电路50。接着,根据R1和R2的电阻值的比例做分压,即可求得所需的直流输出电压。例如,若参考电压Vref为1V,且采用R2/R14/1,意即若R24K,R11K,则直流输出电压即为5V。另可在电阻R1两端跨接一电容C以穏定反馈信号FB。以上实施例仅为说明本发明的原理及功能,并非限制本发明。因此熟悉本技术的人员对上述实施例所做的不违背本发明精神的修改及变化,仍为本发明所涵盖。本发明的权利范围应如本专利申请权利要求所列。权利要求1.一种直流对直流升压转换装置,包含一升压电路,将一工作电压进行升压以产生一直流输出电压;一环形振荡器,用以产生一振荡器输出信号;一分压电路,针对

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号