文档详情

干法刻蚀技术

老**
实名认证
店铺
DOCX
21KB
约6页
文档ID:304477206
干法刻蚀技术_第1页
1/6

蚀刻技术最早的蚀刻技术是利用特定的溶液与薄膜间所进展的化学反响来去除薄膜 未被光阻掩盖的局部,而到达蚀刻的目的,这种蚀刻方式也就是所谓的湿式蚀刻由于湿式蚀刻是利用化学反响来进展薄膜的去除,而化学反响本身不具方向性, 因此湿式蚀刻过程为等向性,一般而言此方式缺乏以定义 3 微米以下的线宽,但对于 3 微米以上的线宽定义湿式蚀刻照旧为一可选择承受的技术湿式蚀刻之所以在微电子制作过程中被广泛的承受乃由于其具有低本钱、高牢靠性、高产能及优越的蚀刻选择比等优点但相对于干式蚀刻,除了无法定义较细的线宽外,湿式蚀刻仍有以下的缺点:1) 需花费较高本钱的反响溶液及去离子水;2) 化学药品处理时人员所患病的安全问题;3) 光阻附着性问题;4) 气泡形成及化学蚀刻液无法完全与晶圆外表接触所造成的不完全及不均匀的蚀刻;5) 废气及潜在的爆炸性湿式蚀刻过程可分为三个步骤:1) 化学蚀刻液集中至待蚀刻材料之外表;2) 蚀刻液与待蚀刻材料发生化学反响; 3) 反响后之产物从蚀刻材料之外表集中至溶液中,并随溶液排出(3)三个步骤中进展最慢者为速率把握步骤,也就是说该步骤的反响速率即为整个反响之速率大部份的蚀刻过程包含了一个或多个化学反响步骤,各种形态的反响都有可能发生,但常遇到的反响是将待蚀刻层外表先予以氧化,再将此氧化层溶解,并随溶液排出,如此反复进展以到达蚀刻的效果。

如蚀刻硅、铝时即是利用此种化学反响方式湿式蚀刻的速率通常可藉由转变溶液浓度及温度予以把握溶液浓度可转变反响物质到达及离开待蚀刻物外表的速率,一般而言,当溶液浓度增加时,蚀刻速率将会提高而提高溶液温度可加速化学反响速率,进而加速蚀刻速率除了溶液的选用外,选择适用的屏蔽物质亦是格外重要的,它必需与待蚀刻材料外表有很好的附着性、并能承受蚀刻溶液的侵蚀且稳定而不变质而光阻通常是一个很好的屏蔽材料,且由于其图案转印步骤简洁,因此常被使用但使用光阻作为屏蔽材料时也会发生边缘剥离或龟裂的情形边缘剥离乃由于蚀刻溶液的侵蚀,造成光阻与基材间的黏着性变差所致解决的方法则可使用黏着促进剂来增加光阻与基材间的黏着性,如 Hexamethyl-disilazane (HMDS)龟裂则是由于光阻与基材间的应力差异太大,减缓龟裂的方法可利用较具弹性的屏蔽材质来吸取两者间的应力差蚀刻化学反响过程中所产生的气泡常会造成蚀刻的不均匀性,气泡留滞于基材上阻挡了蚀刻溶液与待蚀刻物外表的接触,将使得蚀刻速率变慢或停滞,直到气泡离开基材外表因此在这种状况下会在溶液中参与一些催化剂增进蚀刻溶液与待蚀刻物外表的接触,并在蚀刻过程中予于搅动以加速气泡的脱离。

以下将介绍半导体制程中常见几种物质的湿式蚀刻:硅、二氧化硅、氮化硅及铝5-2-1 硅的湿式蚀刻在半导体制程中,单晶硅与复晶硅的蚀刻通常利用硝酸与氢氟酸的混合液来进展此反响是利用硝酸将硅外表氧化成二氧化硅,再利用氢氟酸将形成的二氧化硅溶解去除,反响式如下:Si + HNO3 + 6HF à H2SiF6 + HNO2 + H2 + H2O上述的反响中可添加醋酸作为缓冲剂(Buffer Agent),以抑制硝酸的解离而蚀刻速率的调整可藉由转变硝酸与氢氟酸的比例,并协作醋酸添加与水的稀释加以把握在某些应用中,常利用蚀刻溶液对于不同硅晶面的不同蚀刻速率加以进展(4)例如使用氢氧化钾与异丙醇的混合溶液进展硅的蚀刻这种溶液对硅的(100) 面的蚀刻速率远较(111)面快了很多,因此在(100)平面方向的晶圆上,蚀刻后的轮廓将形成 V 型的沟渠,如图 5-2 所示而此种蚀刻方式常见于微机械组件的制作上2 二氧化硅的湿式蚀刻在微电子组件制作应用中,二氧化硅的湿式蚀刻通常承受氢氟酸溶液加以进展(5)而二氧化硅可与室温的氢氟酸溶液进展反响,但却不会蚀刻硅基材及复晶硅反响式如下:SiO2 + 6HF=H2 + SiF6 + 2H2O由于氢氟酸对二氧化硅的蚀刻速率相当高,在制程上很难把握,因此在实际应用上都是使用稀释后的氢氟酸溶液,或是添加氟化铵作为缓冲剂的混合液,来进展二氧化硅的蚀刻。

氟化铵的参与可避开氟化物离子的消耗,以保持稳定的蚀刻速率而无添加缓冲剂氢氟酸蚀刻溶液常造成光阻的剥离典型的缓冲氧化硅蚀刻液(BOE : Buffer Oxide Etcher)(体积比 6:1 之氟化铵(40%)与氢氟酸(49%)) 对于高温成长氧化层的蚀刻速率约为 1000Å/min在半导体制程中,二氧化硅的形成方式可分为热氧化及化学气相沉积等方 式;而所承受的二氧化硅除了纯二氧化硅外,尚有含有杂质的二氧化硅如 BPSG 等然而由于这些以不同方式成长或不同成份的二氧化硅,其组成或是构造并不完全一样,因此氢氟酸溶液对于这些二氧化硅的蚀刻速率也会不同但一般而言, 高温热成长的氧化层较以化学气相沉积方式之氧化层蚀刻速率为慢,因其组成构造较为致密5-2-3 氮化硅的湿式蚀刻氮化硅可利用加热至 180°C 的磷酸溶液(85%)来进展蚀刻(5)其蚀刻速率与氮化硅的成长方式有关,以电浆关心化学气相沉积方式形成之氮化硅,由于组成构造(SixNyHz 相较于 Si3N4) 较以高温低压化学气相沉积方式形成之氮化硅为松散,因此蚀刻速率较快很多但在高温热磷酸溶液中光阻易剥落,因此在作氮化硅图案蚀刻时,通常利用二氧化硅作为屏蔽。

一般来说,氮化硅的湿式蚀刻大多应用于整面氮化硅的剥除对于有图案的氮化硅蚀刻,最好还是承受干式蚀刻为宜5-2-4 铝的湿式蚀刻铝或铝合金的湿式蚀刻主要是利用加热的磷酸、硝酸、醋酸及水的混合溶液加以进展(1)典型的比例为 80%的磷酸、5%的硝酸、5%的醋酸及 10%的水而一般加热的温度约在 35°C-45°C 左右,温度越高蚀刻速率越快,一般而言蚀刻速率约为 1000-3000 Å /min,而溶液的组成比例、不同的温度及蚀刻过程中搅拌与否都会影响到蚀刻的速率蚀刻反响的机制是藉由硝酸将铝氧化成为氧化铝,接着再利用磷酸将氧化铝予以溶解去除,如此反复进展以达蚀刻的效果在湿式蚀刻铝的同时会有氢气泡的产生,这些气泡会附着在铝的外表,而局部地抑制蚀刻的进展,造成蚀刻的不均匀性,可在蚀刻过程中予于搅动或添加催化剂降低接口张力以避开这种问题发生电浆蚀刻简介自 1970 年月以来组件制造首先开头承受电浆蚀刻技术,对于电浆化学的了解与认知也就蕴育而生在现今的集成电路制造过程中,必需准确的把握各种材料尺寸至次微米大小且具有极高的再制性,而由于电浆蚀刻是现今技术中唯一能极有效率地将此工作在高良率下完成,因此电浆蚀刻便成为集成电路制造过程中的主要技术之一。

电浆蚀刻主要应用于集成电路制程中线路图案的定义,通常需搭配光阻的使用及微影技术,其中包括了 1) 氮化硅(Nitride)蚀刻:应用于定义主动区;2) 复晶硅化物/复晶硅(Polycide/Poly)蚀刻:应用于定义闸极宽度/长度;3) 复晶硅(Poly)蚀刻:应用于定义复晶硅电容及负载用之复晶硅;4) 间隙壁(Spacer)蚀刻:应用于定义 LDD 宽度;5) 接触窗(Contact)及引洞(Via)蚀刻:应用于定义接触窗及引洞之尺寸大小;6) 钨回蚀刻(Etch Back):应用于钨栓塞(W-Plug) 之形成;7) 涂布玻璃(SOG)回蚀刻:应用于平坦化制程;8) 金属蚀刻:应用于定义金属线宽及线长;9) 接脚(Bonding Pad) 蚀刻等影响电浆蚀刻特性好坏的因素包括了:1) 电浆蚀刻系统的型态;2) 电浆蚀刻的参数;3) 前制程相关参数,如光阻、待蚀薄情膜之沉积参数条件、待蚀薄情膜下层薄膜的型态及外表的平坦度等5-3-2 何谓电浆?根本上电浆是由部份解离的气体及等量的带正、负电荷粒子所组成,其中所含的气体具高度的活性,它是利用外加电场的驱动而形成,并且会产生辉光放电(Glow Discharge)现象。

蚀刻用的电浆中,气体的解离程度很低,通常在 10-5-10-1 之间,在一般的电浆或活性离子反响器中气体的解离程度约为 10-5-10-4,假设解离程度到达10-3-10-1 则属于高密度电浆5-3-3 电浆形成之原理电浆的产生可藉由直流(DC)偏压或沟通射频(RF)偏压下的电场形成,如图5-3 所示,而在电浆中的电子来源通常有二:一为分子或原子解离后所产生的电子,另一则为离子撞击电极所产生的二次电子(Secondary Electron),在直流(DC) 电场下产生的电浆其电子源主要以二次电子为主,而沟通射频(RF)电场下产生的电浆其电子源则以分子或原子解离后所产生的电子为主在电浆蚀刻中以直流方式产生辉光放电的缺点包含了:1) 需要较高的功率消耗,也就是说产生的离子密度低;2) 必要以离子撞击电极以产生二次电子, 如此将会造成电极材料的损耗;3) 所需之电极材料必需为导体如此一来将不适用于晶圆制程中在射频放电(RF Discharge)状况下,由于高频操作,使得大部份的电子在半个周期内没有足够的时间移动至正电极,因此这些电子将会在电极间作振荡,并与气体分子产生碰撞而射频放电所需的振荡频率下限将视电极间的间距、压力、射频电场振幅的大小及气体分子的解离位能等因素而定,而通常振荡频率下限为50kHz。

一般的射频系统所承受的操作频率大都为 13.56MHz相较于直流放电,射频放电具有以下优点:1) 放电的状况可始终持续下去而无需二次电子的放射,当晶圆本身即为电极的一部份时,这点对半导体材料制程就显得格外重要了;2) 由于电子来回的振荡,因此离子化的机率大为提升, 蚀刻速率可因而提升;3) 可在较低的电极电压下操作,以减低电浆对组件所导致之损坏;4) 对于介电质材料同样可以运作现今全部的电浆系统皆为射频系统另外值得一提的是在射频系统中一个重要的参数是供给动力的电极面积与接地电极面积之比5-3-4 等效电子及离子温度存在于电浆中的电场分别施力于带正电荷之离子与代负电荷之电子, F=E*q ,而加速度a=F/M,由于离子质量远大于电子,因此电子所获得的加速度与速度将远大于离子,以致电子的动能远大于离子,电子与离子间处于一非平衡状态从气体动力论中,得知 Ekinetic = (3/2) kT,由此可知,等效电子温度远大于等效离子温度,如此可视为 “热” 电子处于 “冷” 电浆之中因此电子能够在低温的状态下供给一般在高温下才能使分子解离所需要的能量在一般蚀刻用的电浆中,等效的电子温度约为 10000 - 100000°K。

5-3-5 电浆蚀刻中的根本物理及化学现象在干式蚀刻中,随着制程参数及电浆状态的转变,可以区分为两种极端的性质的蚀刻方式,即纯物理性蚀刻与纯化学反响性蚀刻纯物理性蚀刻可视为一种物理溅镀(Sputter)方式,它是利用辉光放电,将气体如Ar,解离成带正电的离子,再利用偏压将离子加速,溅击在被蚀刻物的外表,而将被蚀刻物质原子击出此过程乃完全利用物理上能量的转移,故谓之物理性蚀刻其特色为离子撞击拥有很好的方向性,可获得接近垂直的蚀刻轮廓但缺点是由于离子是以撞击的方式到达蚀刻的目的,因此光阻与待蚀刻材料两者将同时患病蚀刻,造成对屏蔽物质的蚀刻选择比变差,同时蚀刻终点必需准确掌控,由于以离子撞击方式蚀刻对于底层物质的选择比很低且被击出的物质往往非挥发性物质,而这些物质简洁再度沉积至被蚀刻物薄膜的外表或侧壁加上蚀刻效率偏低,因此,以纯物理性蚀刻方式在集成电路制造过程中很少被用到纯化学反响性蚀刻,则是利用电浆产生化学活性极强的原(分)子团,此原(分)子团集中至待蚀刻物质的外表,并与待蚀刻物质反响产生挥发性之反响生成物, 并被真空设备抽离反响腔因此种反响完全利用化学反响来达成,故谓之化学反响性蚀刻此种蚀刻方式相近于湿式蚀刻,只是反响物及。

下载提示
相似文档
正为您匹配相似的精品文档