东南大学考试卷课程名称高等数学A (期中)考试学期09-10-3 得分适用专业选学高数A的各专业考试形式 闭卷 考试时间长度120分钟填空题(此题共5小题,每题4分,总分值20分)1.由方程xyz + sin(»2)= 0确定的隐函数z = z(x,y)在点(1,0/)处的全微分dz =—dy兀 njr2 .设 In z = 1H ——i,那么 Rez 二3y/3e2 口3 .曲线x = sin,,y = 1 -cos,,z =,在点1,1,四 处的法平面方程为 y + z = 1 + —I 2j24.设曲线C为球面/ + 丁2+22=〃2(〉0)与平面y 二%的交线,那么曲线积分2 y2 + z? + z)ds 的值等于2兀# 「 ;C5.设曲面S: x + y + z = 1,那么口(x + |y|)dS = s4733 口单项选择题(此题共4小题,每题4分,总分值16分)6.曲面z = 4-f 一y2在点p处的切平面平行于平面2x+2y + z-l = 0,那么点为[C(A)(1,—1,2)(B) (-1,1,2)(C) (1,1,2)(D) (-1,-1,2)7.设函数/(x,y)连续,那么二次积分/(x,y)dy等于J - J sinx2(A)./(x,y)dx J 0 J ^4-arcsin y(B). /(x9j)drJ 0 J ^-arcsin yW^-arctan y£以x, y)dx2p 1 p 万+arctan y
X — 1)2 + (> — 1)2 4 1令〃 =x -1, u = y -1,贝【JJ = i,D:u2 +v2 <1原式二JJ (3〃-2v +对称性 Jj 2dudv = 2 兀DD法2:利用形心坐标.法3:平移极坐标.令 x = 1 + p cos 9, y = 1 + p sin 0法4 :利用 Gree〃公式. x = 1 + cos f, y = 1 + sin fjj (3x- 2y)d(7 = y2dx-\-- x~dy 参数方程代入 兀 d12故原式=兀+兀12 .设调和函数〃(x, y) = ev-v cos(x + y) + y,求函羽y)的共辗调和函数v(x,y),并求解析函数 f(z) = u(x9 y) + iv(x, y)表达式(自变量单独用z表示),且满足/(0) = l + i.法1:先求口vv = ux = ex~y cos(x + y) - ex~y sin(x + y)=> u = ex~y sin(x + y) +(p(x)n vx = ex~y sin(x + y) + ex~y cos(x + y) +,(x)又叭=一〃 v = 6 V cos(尤 + y) + ex~y sin(x + y) - 1n(p'(x) = -1 =>(p(x) = 一尤+ C=> v = e v-v sin(x 4- y) - x + C那么/(z) = u + iv = (ex~y cos(x + y) + y) + i(ex~y sin(x + y) - x + C)=ez cos z + i(ez sin z - z + C) = e(l+l)~ + z(C - z)由"0) = 1 + i n f(z) = e(1+i)z + z(l - z)法2 :先求T(z)./'(z) = (e= cos z-e= sin z) + i(ez cos z + ez sin z-l) = e(1+l)z(l + i)-i如(z) =反 + c, c = i再从中给出v = ex~y sin(x +y)-x + C13.求极限lim4-0+ /jjj sin(x2 + y2 + z2 )dxdydz .2 o 09x +y^+z^
取逆时针方向.(此题取消)。