计量经济学案例分析一元回归模型实例分析报告 ∑ x = 1264471.423 ∑ y = 516634.011 ∑ X = 52432495.137 ∑ ? ? ? ? 案例分析 1— 一元回归模型实例分析 依据 11016-2005 年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均 消费支出和人均纯收入的数据如表 2-5: 表 2-5 农村居民 11015-2004 人均消费支出和人均纯收入数据资料 单位:元 年度 11015 11016 11017 11018 11019 2000 2001 2002 2003 2004 人均纯 收入 1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4 人均消 费支出 1310.4 1573.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7 一、建立模型 以农村居民人均纯收入为解释变量 X ,农村居民人均消费支出为被解释变量 Y ,分析 Y 随 X 的变化而变化的因果关系。
考察样本数据的分布并结合有关经济理论,建立一元线 性回归模型如下: Y i =β0+β1X i +μi 根据表 2-5 编制计算各参数的基础数据计算表 求得: X = 2262.035 Y = 1704.082 2 i 2 i ∑ x i y i = 788859.1016 2 i 根据以上基础数据求得: β1 = ∑ x i y 2 i i = 788859.1016 126447.423 = 0.623865 β 0 = Y - β1 X = 1704.082 - 0.623865 ? 2262.035 = 292.8775 样本回归函数为: Y i = 292.8775 + 0.623865X i 上式表明,中国农村居民家庭人均可支配收入若是增加 101 元,居民们将会拿出其中 的 62.39 元用于消费 ∑ x = 1264471.423 ∑ y = 516634.011 ∑ X = 52432495.137 ∑ ? ? ? ? 案例分析 1— 一元回归模型实例分析 依据 11016-2005 年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均 消费支出和人均纯收入的数据如表 2-5: 表 2-5 农村居民 11015-2004 人均消费支出和人均纯收入数据资料 单位:元 年度 11015 11016 11017 11018 11019 2000 2001 2002 2003 2004 人均纯 收入 1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4 人均消 费支出 1310.4 1573.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7 一、建立模型 以农村居民人均纯收入为解释变量 X ,农村居民人均消费支出为被解释变量 Y ,分析 Y 随 X 的变化而变化的因果关系。
考察样本数据的分布并结合有关经济理论,建立一元线 性回归模型如下: Y i =β0+β1X i +μi 根据表 2-5 编制计算各参数的基础数据计算表 求得: X = 2262.035 Y = 1704.082 2 i 2 i ∑ x i y i = 788859.1016 2 i 根据以上基础数据求得: β1 = ∑ x i y 2 i i = 788859.1016 126447.423 = 0.623865 β 0 = Y - β1 X = 1704.082 - 0.623865 ? 2262.035 = 292.8775 样本回归函数为: Y i = 292.8775 + 0.623865X i 上式表明,中国农村居民家庭人均可支配收入若是增加 101 元,居民们将会拿出其中 的 62.39 元用于消费。