文档详情

高中数学公式(苏教版)

王***
实名认证
店铺
DOC
692KB
约11页
文档ID:287402741
高中数学公式(苏教版)_第1页
1/11

高 中 数 学 公 式 (苏教版)使用说明:本资料需要有经验老师讲解每一个公式,然后根据公式出一个题来运用、理解公式,天天坚持直到高考这样效果极佳;另外术业教育每天出一份高考数学挑战题卡(上传到学优高考网),保证你的学生数学成绩能够从20分迅速提高到100分,这项成果经过我们十几年的教学实践总结,效果绝对好一、 集合1. 集合的运算符号:交集“”,并集“”补集“”子集“”2. 非空集合的子集个数:(是指该集合元素的个数)3. 空集的符号为二、函数1. 定义域(整式型:;分式型:分母;零次幂型:底数;对数型:真数;根式型:被开方数)2. 偶函数: 奇函数: 在计算时:偶函数常用: 奇函数常用:或3. 单调增函数:当在递增,也递增;当在递减,也递减 单调减函数:与增函数相反4. 指数函数计算:;;;; 指数函数的性质:;当时,为增函数; 当时,为减函数 指数函数必过定点5.对数函数计算:;;;; ;对数的性质: ;当时,为减函数.当时,为增函数对数函数必过定点6. 幂函数: 7. 函数的零点:①的零点指 ②在内有零点;则三、 三角函数①计算:; ②正负符号判断:“一全正,二正弦,三切,四余弦”③和差公式: ④二倍角公式:;;⑤特殊角 1 0 1 0 0 1 不存在 0⑥诱导公式口诀“奇变偶不变;符号看象限。

⑦如何将三角函数化为;利用三角函数相关的公式三看:一看平方: 二看乘积: 三看加减: 其中 ; 特别强调当a<0时:⑧三角函数 的性质:⑴单调增减区间:↑ ↓⑵对称轴方程: ;对称中心:⑶周期: ④时,⑸值域: ⑥记死:两条相邻对称轴之间距离为 两条相邻对称中心距离为9. 由图像求,三步:第一步:由图找到振幅 第二步:由图找到周期,然后由求出具体值 第三步:代“特殊点”利用特殊角求出的值10.11. 平移个单位四、 正余弦定理 ①边与角之间的转化:用正弦定理 ;; , , (把边转化为角) ,, (把角转化成边) ②余弦定理: ③面积公式: ④诱导公式: 五、 向量① 则,② 向量同理③的夹角公式:④⑤⑥⑦单位向量指“模”为1:为单位向量六、数列①后一项减去前一项的值为一个常数:②后一项除以前一项的值为一个常数:③等差数列通项公式: 等比数列通项公式:④等差数列求和公式: 等比数列求和公式:⑤⑥等差数列中项公式: 等比数列中项公式:⑦求和公式:“分组求和 ” “裂项相消” “错位相减”:七、 统计以概率:①众数指“出现次数最多的那个数” 中位数指“从小排到大的中间那个数”②方差 标准方差:③ 各组频率之和=1④极差:⑤学会认茎叶图⑥分层抽样:第一步求出各组的比例 第二步用样本总数比例=分组频数⑦回归方程当时,x与y正相关当时,x与y负相关⑧;二联表总abcd总八、 命题①原命题:否命题(条件和结论都否定);逆命题(条件和结论互换位置);逆否命题(将逆命题进行否定)②“或” “且” “非” 一真全真 一假全假 真假互换 ③则A是B充分不必要 则A是B的必要不充分则A是B的充要条件④全称量词:符号: 存在量词:符号 “ ”与 “ ” 相互否定,“所有” “存在 ”九、 导数①基本函数求导: ;;(本身) (常数求导=0);;②乘法求导:;除法求导:③复合求导:这个公式记题型④斜率 切线方程:⑤在处取极值⑥求单调区间:令 求单调增区间 .令,求减区间⑦求极值方法:第一步,求导函数 第二步:求单调区间 第三步:作图由图求极值。

⑧求最值方法:同求极值方法一样,最后一步由给定区间取舍求最值十、 解析几何 1、直线 (1)直线斜率(2)直线的方程:点斜式:;斜截式: 截距式: 一般式:(3)两条直线位置关系:且; 或者(4)距离公式:点到直线距离公式: 两点间距离公式 两条平行直线间的距离(5)直线恒过定点:(记题型)(6)直线与坐标围成三角形面积(a,b指截距) (7)求两条直线的交点:联立方程组 (8)点关于直线对称:图形 公式:,;2、 圆(1)圆的标准方程: 圆心:;半径: 一般: 圆心 ,参数方程:参数方程求最值(2) 圆与直线的位置关系弦长公式: 图形:相切: 图形:相离: 图形:(3) 圆与圆位置关系(记题型)3、 椭圆和双曲线 ① 椭圆指一个动点到两个定点之间距离为双曲线是指一个动点到两个定点之差为② 椭圆和双曲线的基本性质 (1)椭圆的长轴: ,为长半轴,短轴,为短半轴椭圆的焦距为: 为半焦距 (2)双曲线的实轴:,为实半轴;虚轴:,为虚半轴双曲线的焦距为: 为半焦距 (3)椭圆的的等量关系: 双曲线的的等量关系:(4) 椭圆和双曲线的离心率公式:(5) 椭圆和双曲线的准线:,(6) 椭圆没有渐进线:双曲线存在渐近线(焦点轴)(焦点轴)(7) 椭圆的标准方程:(8) 双曲线的标准方程:十、 抛物线1、 抛物线是指一个动点到一个定点的距离等于这个动点到定直线的距离 如图: 公式:2、 抛物线的方程:,,,。

抛物线的标准方程和图像① 图像: ② 图像:③ 图像: ④图像十一 立体几何证明:①的方法:定线、定面、定垂直1、三线合一 2、勾股定理 3、性质 4、圆周角为②方法:定线、定面、定平行1、中位线定理 2、平行四边形原则③,求证:④ 求证:理科学生记忆设异面直线夹角: 和线面夹角: 和法向量二面角:法向量 ; 法向量体积公式:①,,;②由侧视图定“锥,柱,球” 由俯视图定“棱数” 由正视图定“体积的高”十二、 复数 ① 实部为,虚部为b(不带单位) ② ③确定复数所在的象限 ④ ⑤共轭复数: 与 实部相同,虚部相反 ⑥化简: ⑦纯虚数:实部 虚部十三、 解不等式一、 ①口诀“大于取两边,小于取中间”②的系数不能为负③分母④真数⑤解不等式的步骤:第一步,把不等式变为老师规定的形式 第二步,把不等式变为等式,解方程的根 第三步,选择恰当的方法解不等式 第四步,把不等式写成集合或者区间二、 由不等式组构成线性规划,求目标函数的最值 ①画可行域 ②求交点 ③代入值三、 理科“正态分布”和“极坐标”由题型来讲解和总结四、 均值不等式 ① ②当且仅当时,取等号十四、 排列、组合、二项式定理:1、 排列考点:①相邻 ②不相邻 ③位置的限定 ④集团排列⑤数字问题 ⑥间隔问题 ⑦信和邮箱2、 组合:①分堆问题 ②均分问题 ③多面手问题 ④鞋子成双3、 二项式定理 ①通项公式: ②项的系数和二项式系数的区别 ③二项式系数之和和项的系数之和 ④化简:特别注意:分数幂,负数幂 4、古典概率: (记题型)。

下载提示
相似文档
正为您匹配相似的精品文档