第二十二量子力学的实验基础幻灯片课件

上传人:夏日****8 文档编号:279772328 上传时间:2022-04-20 格式:PPT 页数:78 大小:4.43MB
返回 下载 相关 举报
第二十二量子力学的实验基础幻灯片课件_第1页
第1页 / 共78页
第二十二量子力学的实验基础幻灯片课件_第2页
第2页 / 共78页
第二十二量子力学的实验基础幻灯片课件_第3页
第3页 / 共78页
第二十二量子力学的实验基础幻灯片课件_第4页
第4页 / 共78页
第二十二量子力学的实验基础幻灯片课件_第5页
第5页 / 共78页
点击查看更多>>
资源描述

《第二十二量子力学的实验基础幻灯片课件》由会员分享,可在线阅读,更多相关《第二十二量子力学的实验基础幻灯片课件(78页珍藏版)》请在金锄头文库上搜索。

1、第二十二量子力学的实验基础幻灯片优选第二十二量子力学的实验基础四个主要内容主要内容第一节2 2 - 12 2 - 1radiation of black body热辐射定性图述单色辐出度辐出度一般辐射的复杂性黑体黑体实验模型黑体辐射测量黑体(小孔表面)集光透镜平行光管分光元件会聚透镜及探头 分光元件(如棱镜或光栅等)将不同波长的辐射按一定的角度关系分开,转动探测系统测量不同波长辐射的强度分布。再推算出黑体单色辐出度按波长的分布。黑体辐射规律2 0 0 0 Ks s = 5.6710 Wm K - 2- 8- 4斯特藩斯特藩-玻耳兹曼定律玻耳兹曼定律维恩位移定律维恩位移定律b = 2.898 1

2、0 m K - 3M ( T )BlBl黑黑体体的的单单色色辐辐出出度度1 7 5 0 K1 5 0 0 K1 0 0 0 K10 m- 61 2 3 4 5 6 波波波波 长长长长 l l0紫外灾难 但沿用经典物理概念(如经典电磁辐射理论和能量均分定理)去推导一个符合实验规律的黑体单色辐出度函数 均遇到困难。其中一个著名的推导结果是(瑞利金斯公式)当时,即波长向短波(紫外)方向不断变短时,则 经典物理概念竟然得出如此荒唐的结论,物理学史上称之为 “ 紫外灾难 ” 。黑体辐射问题所处的困境成为十九世末“物理学太空中的一朵乌云”,但它却孕育着一个新物理概念的诞生。普朗克公式 1900年10月19

3、日,德国物理学家普朗克提出了一个描述黑体单色辐出度分布规律的数学公式,光在真空中的速率玻耳兹曼常量普朗克常量数值为 6.6310 J s - 34并很快被检验与实验结果相符。其波长表达式为理论曲线波波 长长 l10 m- 6002431M ( T )BlBl10 W m m11-1-21 2 3 4 5 2 0 0 0 K1 7 5 0 K1 5 0 0 K1 0 0 0 KM (T) = Bl l2phcl52ehckl lT11单色辐出度函数及曲线单色辐出度函数及曲线线线普朗克的黑体普朗克的黑体能量子假设 19001900年年1212月月2424日,普朗日,普朗克在克在关于正常光谱的能量分

4、布定律的理论关于正常光谱的能量分布定律的理论一文中提出能量量子化假设,量子论诞生。一文中提出能量量子化假设,量子论诞生。这些谐振子和空腔中的辐射场这些谐振子和空腔中的辐射场相互作用过程中吸收和发射的能相互作用过程中吸收和发射的能量是量子化的,只能取一些分立量是量子化的,只能取一些分立值:值:e e , 2 2 e e , ,n e e ;可视为带电的线性谐振子;可视为带电的线性谐振子;组成黑体腔壁的分子或原子组成黑体腔壁的分子或原子频率频率为n n 的谐振子,吸收和发的谐振子,吸收和发射能量的最小值射能量的最小值 e = e = h n n 称为称为能量子(或量子)能量子(或量子)h = 6.

5、6310 J s - 34称为普朗克常量称为普朗克常量黑体例一490 nm2.89810_349010_95.91103( K )由斯特藩-玻耳兹曼定律5.6710 (5.9110 )_83 476.9210( W m )_2黑体例二2.89810 m K-34.965解得:4.9654.9652.89810 m K-3黑体例三黑体例四由普朗克公式频率表达式导出斯特藩-波耳兹曼定律-85.670510-2Wm K-4-85.670510-2Wm K-4第二节photoelectric effect and Compton effect2 2 - 22 2 - 2爱因斯坦与康普顿1923年用X射

6、线通过石墨的散射实验进一步证明光的粒子性。光子与电子碰撞服从能量及动量守恒定律。1905年提出光量子(光子)理论,成功解释光电效应。光电效应实验 光束射到金属表面使光束射到金属表面使电子从金属中脱出的现电子从金属中脱出的现象称为光电效应。象称为光电效应。光强较强光强较强光强较弱光强较弱频频率率 相相同同饱和光电流饱和光电流饱和光电流饱和光电流 即光电子恰即光电子恰被遏止,不能到达阳极。光电子被遏止,不能到达阳极。光电子最大初动能可用遏止电势差与电最大初动能可用遏止电势差与电子电荷乘积的大小来量度。子电荷乘积的大小来量度。U = - U i = 0a 时时 实验基本规律 饱和光电流饱和光电流与光

7、强成正比。与光强成正比。在饱和状态下,单位时间由阴极在饱和状态下,单位时间由阴极发出的光电子数与光强成正比。发出的光电子数与光强成正比。 光束射到金属表面使电子从金属中脱出的现象称为光电效应。光强较强光强较弱频率 相同饱和光电流饱和光电流U = - U i = 0a时 光 即光电子恰被遏止,不能到达阳极。光电子最大初动能等于 反向电场力的功 轴截距轴截距 称为称为截止频率截止频率或或红限红限, ,入射光频,入射光频率小于截止频率时无论光率小于截止频率时无论光 强多强多大都不能产生光电效应。每种大都不能产生光电效应。每种金属有自己的截止频率。金属有自己的截止频率。 时无论光强多弱,时无论光强多弱

8、,光照与电子逸出光照与电子逸出几乎同时几乎同时发生发生。 遏止电势差遏止电势差的大小与入射光的大小与入射光的频率成线性关系,与光强无关。的频率成线性关系,与光强无关。与材料与材料与材料与材料无关的普适常量无关的普适常量有关的常量有关的常量即即 光电子最大初动能随入射光频光电子最大初动能随入射光频率增大而线性增大,与光强无关。率增大而线性增大,与光强无关。波动理论的困难光量子理论光子能、质、动量式光电效应方程照射金属表面,红限、逸出功数据表金 属 截止频率(10 Hz)14逸出功(eV)金 属 截止频率(10 Hz)14逸出功(eV)某些金属和半导体的截止频率(红限)及逸出功某些金属和半导体的截

9、止频率(红限)及逸出功 钨 W 10.97 4.54 钙 Ca 6.55 2.71 钠 Na 5.53 2.29 钾 K 5.43 2.25 銣 Rb 5.15 2.13 銫 Cs 4.69 1.94 铀 U 8.76 3.63 铂 Pt 15.28 6.33 银 Ag 11.55 4.78 铜 Cu 10.80 4.47 锗 Ge 11.01 4.56 硅 Si 9.90 4.10 硒 Se 11.40 4.72 铝 Al 9.03 3.74 锑 Sb 5.68 2.35 锌 Zn 8.06 3.34光子论的成功解释频率 一定,光强 越大则单位时间打在金属表面的光子数就越多,产生光电效应时单

10、位时间被激发而逸出的光电子数也就越多,故饱和电流 与光强 成正比。每一个电子所得到的能量只与单个光子的能量 有关,即只与光的频率 成正比,故光电子的初动能与入射光的频率 成线性关系,与光强 无关。一个电子同时吸收两个或两个以上光子的概率几乎为零,因此,若金属中电子吸收光子的能量 即入射光频率 时,电子不能逸出,不产生光电效应。光子与电子发生作用时,光子一次性将能量 交给电子,不需要持续的时间积累,故光电效应瞬时即可产生。爱因斯坦因此而获得了1921年诺贝尔物理学奖光电效应例题 用波长l=0.35l=0.35mm的紫外光照射金属钾做光电效应实验,求 (1)紫外光子的能量、质量和动量; (2)逸出

11、光电子的最大初速度和相应的遏止电势差。(2)由爱因斯坦方程 查表, 钾的逸出功 A = 2.25 eV,6.7610 (m s )5- 1代入后解得由截止电势差概念及爱因斯坦方程解得1.3 (V ) (1)由爱因斯坦光子理论光子能量光子质量光子动量5.6810 (J )- 196.3110 (Kg)- 361.8910 (Kg m s ) - 27- 1康普顿效应概述l l l l l l l l l l l l X 射 线 其光子能量比可见光光子能量大上万倍X射线发生散射原子核与内层电子组成的原子实外层电子散 射 体康普顿最初用石墨,其原子序数不太大、电子结合能不太高。 用X射线照射一散射体

12、(如石墨)时,X射线发生散射,散射线中除有波长和入射线 相同的成分外,还有波长 的成分。这种现象称为康普顿效应。l l l l l l 谱线 称位移线l l l l l l 称 波长偏移量或康普顿偏移l l l l l l 偏移散射角实验l l l l l l 波长偏移量检测系统检测系统晶 体l l l l l l l l l l l l l l l l l l l l l l l l 散射角l l l l 射 线 源l 散射体散射体散射体散射体l l j j 实验实验不同物质实验l l l l l l l l l l l l l l l l l l l l l l l l X射线X射线X射线

13、散射要点归纳要 点 归 纳: 2. 波长偏移量 随散射角 的增大而增加,与散射物质无关。 1. 散射线中除有波长与入射线 相同的成分外,还有波长 的成分。 3. 各种散射物质对同一散射角 ,波长偏移量 相等。当散射物的原子序数增加时,散射线中的 谱线强度增强, 谱线的强度减弱。llllll l l l l l lX 射 线 其光子能量比可见光光子能量大上万倍X射线发生散射原子核与内层电子组成的原子实外层电子散 射 体康普顿最初用石墨,其原子序数不太大、电子束缚能不太高。 用X射线照射一散射体(如石墨)时,X射线发生散射,散射线中除有波长和入射线 相同的成分外,还有波长 的成分。这种现象称为康普

14、顿效应。l ll ll l谱线 称位移线l ll ll l称 波长偏移量或康普顿偏移l ll ll ll ll ll l波长偏移量检测系统检测系统晶 体l ll ll ll ll ll ll ll ll ll ll ll l散射角l ll l 射 线 源l散射体散射体散射体散射体谱线的强度随Z的增加而增强;谱线的强度随Z的增加而减弱。X射线X射线X射线偏移机理示意图光的波动理论无法解释散射线中存在波长 的成分。l l l l 康普顿用光子理论予以解释并给出波长偏移量 的理论公式。l l 散射线中的 成分是光子与外层电子发生弹性碰撞的结果。l l l l 散射线中的 成分是光子与原子实发生弹性碰

15、撞的结果。l l X 射 线cl l l l l l l l l l l l l cccc散 射 体l 原子实视为静止,其质量电子静止质量X射线光子能量散射物质原子外层电子的结合能故外层电子可视为自由电子与光子碰撞前近似看成静止康普顿偏移公式电子静止质量普朗克常量真空中光速均为常量故为常量,用 表示,称为 康普顿波长康普顿波长2.4310 (m) 0.00243 ( nm )-12散射体散射体随的增大而增大与散射物质无关并与实验结果相符 光子与外层电子发生弹性碰撞时,服从动量守恒和能量康普顿偏移公式康普顿偏移公式守恒定律。由此推导出波长偏移量表达式:有关现象解释康普顿因发现康普顿效应而获得了1

16、927年诺贝尔物理学奖 散射物质的原子序数增大,原子核对电子的束缚力增强,组成原子实的电子数目相对增多,可作为自由电子看待的电子数目相对减少,散射线中的 谱线强度相对减弱, 谱线的强度相对增强。l l l l 散射物质原子实的质量 为 10 10 kg 数量级 -26-23这样小的波长偏移量,仪器无法分辩,可认为这就是散射线中波长为 的谱线。为10 10 (m) 即10 10 ( nm ) 数量级-16-19-7-10故 光子与原子实发生弹性碰撞时,也服从动量守恒和能量守恒定律。由此可推导出与康普顿偏移公式相似的形式:偏移公式推导光子电子弹性碰撞末能量末动量散射光子反冲电子大小:合初能量初动量大小:能量守恒动量守恒续36得应满足相对论的能量与动量的关系联立解得写成波长差的形式即为康普顿偏移公式:动量守恒能量守恒康普顿、光电效应比较康普顿效应与光电效应的异同康普顿效应与光电效应的异同 康普顿效应与光电效应都涉及光子与电子的相互作用。 在光电效应中,入射光为可见光或紫外线,其光子能量为ev数量级,与原子中电子的束缚能相差不远,光子能量全部交给电子使之逸出,并具有初动能。光电效应证实了此过程

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号