文档详情

HFSS学习笔记汇编

1824****985
实名认证
店铺
DOCX
21.49KB
约19页
文档ID:278270162
HFSS学习笔记汇编_第1页
1/19

HFSS学习笔记 Ansoft HFSS 的边界条件 用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用在边界和场源处,场是不连续的,场的导数变得没有意义因此,边界条件确定了跨越不连续边界处场的性质 作为一个 Ansoft HSS 用户你必须时刻都意识到由边界条件确定场的假设由于边界条件对场有制约作用的假设,我们可以确定对仿真哪些边界条件是合适的对边界条件的不恰当使用将导致矛盾的结果 当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性事实上,Ansoft HFSS 能够自动地使用边界条件来简化模型的复杂性对于无源RF 器件来说,Ansoft HFSS 可以被认为是一个虚拟的原型世界与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的为了获得这个有限空间,Ansoft HFSS使用了背景或包围几何模型的外部边界条件 模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。

一般边界条件 有三种类型的边界条件第一种边界条件的头两个是多数使用者有责任确定的边界或确保它们被正确的定义材料边界条件对用户是非常明确的 1、激励源 波端口(外部) 集中端口(内部) 2、表面近似 对称面 理想电或磁表面 辐射表面 背景或外部表面 3、材料特性 两种介质之间的边界 具有有限电导的导体 背景如何影响结构 所谓背景是指几何模型周围没有被任何物体占据的空间任何和背景有关联的物体表面将被自动地定义为理想的电边界(Perfect E)并且命名为外部(outer)边界条件你可以把你的几何结构想象为外面有一层很薄而且是理想导体的材料 如果有必要,你可以改变暴露于背景材料的表面性质,使其性质与理想的电边界不同为了模拟有耗表面,你可以重新定义这个边界为有限电导(Finite Conductivity )或阻抗边界(Impedance boundary)有限电导边界可以是一种电导率和导磁率均为频率函数的有耗材料阻抗边界默认在所有频率都具有相同的实数或复数值为了模拟一个允许波进入空间辐射无限远的表面,重新定义暴露于背景材料的表面为辐射边界(Radiation Boundary)。

背景能够影响你怎样给材料赋值例如,你要仿真一个充满空气的矩形波导,你可以创建一个具有波导形状特性为空气的简单物体波导表面自动被假定为良导体而且给出外部(outer)边界条件,或者你也可以把它变成有损导体 一般来说,我们仿真设置空气盒子作为辐射边界的时候,选择空气盒子大小为四分之一波长,会出现比较合适的结果 边界条件的技术定义 激励(Excitation)——激励端口是一种允许能量进入或导出几何结构的边界条件 理想电边界(Perfect E)——Perfect E是一种理想电导体或简称为理想导体这种边界条件的电场(E-Field)垂直于表面有两种边界被自动地赋值为理想电边界 1、任何与背景相关联的物体表面将被自动地定义为理想电边界并且命名为outer的外部边界条件 2、任何材料被赋值为PEC(理想电导体)的物体的表面被自动的赋值为理想电边界并命为smetal边界 理想磁边界(Perfect H)——Perfect H是一种理想的磁边界边界面上的电场方向与表面相切 自然边界(Natural)——当理想电边界与理想磁边界出现交叠时,理想磁边界也被称为Natural边界。

理想磁边界与理想电边界交叠的部分将去掉理想电边界特性,恢复所选择区域为它以前的原始材料特性它不会影响任何材料的赋值例如,可以用它来模拟地平面上的同轴线馈源图案 有限电导率(Finite Conductivity)边界——有限电导率边界将使你把物体表面定义有耗(非理想)的导体它是非理想的电导体边界条件并且可类比为有耗金属材料的定义为了模拟有耗表面,你应提供以西门子/米 (Siemens/meter)为单位的损耗参数以及导磁率参数计算的损耗是频率的函数它仅能用于良导体损耗的计算其中电场切线分量等于Zs(n xHtan)表面电阻(Zs)就等于 (1+j)/(ds)其中, d 是趋肤深度;导体的趋肤深度为 w 是激励电磁波的频率. s 是导体的电导率 μ 是导体的导磁率 阻抗边界(Impedance)——一个用解析公式计算场行为和损耗的电阻性表面表面的切向电场等于Zs(n xHtan)表面的阻抗等于Rs + jXs其中,Rs是以ohms/square为单位的电阻 Xs 是以ohms/square为单位的电抗 分层阻抗(Layered Impedance)边界——在结构中多层薄层可以模拟为阻抗表面。

使用分层阻抗边界条件进一步的信息可以在帮助中寻找 集总RLC(Lumped RLC)边界——一组并联的电阻、电感和电容组成的表面这种仿真类似于阻抗边界,只是软件利用用户提供的R、L和C值计算出以ohms/square为单位的阻抗值 无限地平面(Infinite Ground Plane)——通常,地面可以看成是无限的、理想电壁、有限电导率或者是阻抗的边界条件如果结构中使用了辐射边界,地面的作用是对远区场能量的屏蔽物,防止波穿过地平面传播为了模拟无限大地平面的效果,在我们定义理想电边界、有限电导或阻抗边界条件时,在无限大地平面的框子内打勾 辐射边界(Radiation)——辐射边界也被称为吸收边界辐射边界使你能够模拟开放的表面即,波能够朝着辐射边界的方向辐射出去系统在辐射边界处吸收电磁波,本质上就可把边界看成是延伸到空间无限远处辐射边界可以是任意形状并且靠近结构这就排除了对球形边界的需要对包含辐射边界的结构,计算的S参数包含辐射损耗当结构中包含辐射边界时,远区场计算作为仿真的一部分被完成 激励技术综述 端口是唯一一种允许能量进入和流出几何结构的边界类型。

你可以把端口赋值给一个两维物体或三维物体的表面在几何结构中三维全波电磁场被计算之前,必须确定在每一个端口激励场的模式Ansoft HFSS 使用任意的端口解算器计算自然的场模式或与端口截面相同的传输线存在的模式导致两维场模式作为全三维问题的边界条件 Ansoft HFSS默认所有的几何结构都被完全装入一个导电的屏蔽层,没有能量穿过这个屏蔽层当你应用波端口(Wave Ports)于你的几何结构时,能量通过这个端口进入和离开这个屏蔽层 作为波端口的替代品,你可以在几何结构内应用集中参数端口(Lumped Ports)集中参数端口在模拟结构内部的端口时非常有用 波端口(Wave Ports) 端口解算器假定你定义的波端口连接到一个半无限长的波导,该波导具有与端口相同的截面和材料每一个端口都是独立地激励并且在端口中每一个入射模式的平均功率为1瓦波端口计算特性阻抗、复传播常数和S参数定义波端口的面平必须有一定长度的均匀横截面,以保证截止模的逐渐消失,左侧的波导模型波端口设置是不正确的,因为波导的两端没有均匀横截面的部分,为了正确建模,需要在波端口出添加足够长度的均匀横截面。

模式(Modes) 对于给定横截面的波导或传输线,特定频率下有一系列的场模式满足麦克斯维方程组这些模式的线性叠加都可以在波导中存在 模式转换,某些情况下,由于几何结构的作用像一个模式变换器,计算中包括高阶模式的影响是必须的例如,当模式1(主模)从某一结构的一个端口(经过该结构)转换到另外一个端口的模式2时,我们有必要得到模式2下的S参数 在单一模式的信号激励下,三维场的解算结果中仍然可能包含由于高频结构不均匀引起的高次模反射如果这些高次模反射回激励源端口,或者传输到下一个端口,那么和这些高次模相关的S参数就必须被考虑如果高次模在到达任何端口前,得到衰减(这些衰减由金属损耗或者传播常数中的衰减部分所造成),那么我们就可以不考虑这些高次模的S参数 模式和频率,一般来说,和每种模式相关的场模式也许会随频率的改变而变化然而,传播常数和特性阻抗总是随频率变化的因此,需要频扫时,在每一个频率点,都应有相应的解算通常,随着频率的增加,高次模出现的可能性也相应的增加 模式和S参数,当每个端口的定义都正确时,仿真中包括的每个模式,在端口处都是完全匹配的。

因此,每个模式的S参数和波端口,将会根据不同频率下的特性阻抗进行归一化这种类型的S参数叫做广义的S参数实验测量,例如矢量网络分析仪,以及电路仿真器中使用的特性阻抗是常数(这使得端口在各个频率下不是完全匹配)为了使计算结果,和实验及电路仿真得到的测量结果保持一致,由HFSS得到的广义S参数必须用常数特性阻抗进行归一化如何归一化,参看波端口校准 注解:对广义S参数归一化的失败,会导致结果的不一致例如,既然波端口在每一个频点都完全匹配,那么S参数将不会表现出各个端口间的相互作用,而实际上,在为常数的特性阻抗端口中,这种互作用是存在的 波端口的边界条 波端口边缘有以下所述的边界条件:理想导体或有限电导率边界—在默认条件下,波端口边缘的外部定义为理想导体在这种假设条件下,端口定义在波导之内对于被金属包裹传输线结构,这是没问题的而对于非平衡或者没被金属包围的传输线,在周围介质中的场必须被计算,不正确的端口尺寸将会产生错误的结果 对称面——端口解算器可以理解理想电对称面(Perfect E symmetry)和理想磁对称面(Perfect H symmetry)面使用对称面时,需要填入正确的阻抗倍增数。

阻抗边界——端口解算将识别出端口边缘处的阻抗边界 辐射边界——在波端口和辐射边界之间默认的设置是理想导体边界 波端口校准 一个添加到几何结构的波端口必须被校准以确保一致的结果为了确定场的方向和极性以及计算电压,校准是必要的 求解类型:模式驱动 对于模式驱动的仿真,波端口使用积分线校准每一条用于校准的积分线线都具有以下的特性: 阻抗:作为一个阻抗线,这条线作为Ansoft HFSS在端口对电场进行积分计算电压的积分路径Ansoft HFSS利用这个电压计算波端口的特性阻抗这个阻抗对广义S参数的归一化是有用的通常,这个阻抗指定为特定的值,例如,50欧姆 注意:如果你想有能力归一化特性阻抗或者想观察Zpv或Zvi的值就必须在端口设定积分线 校准:作为一条校准线,这条线明确地确定每一个波端口向上或正方向在任何一个波端口,时的场的方向至少是两个方向中的一个在同一端口,例如圆端口,有两个以上的可能的方向,这样你将希望使用极化(Polarize)电场的选项如果你不定义积分线,S参数的计算结果也许与你的期望值不一致 提示:也许你需要首先运行端口解(ports-only solution ),帮助你确定如何设置积分线和它的方向。

为了用积分线校准一个已经定义的波端口。

下载提示
相似文档
正为您匹配相似的精品文档