文档详情

2022年广东省中考真题(解析版)

1980****057
实名认证
店铺
DOCX
15.34KB
约11页
文档ID:273456854
2022年广东省中考真题(解析版)_第1页
1/11

2022年广东省中考真题(解析版) 2022年广东省中考数学真题 一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的. 1.(3分)四个实数0、、﹣3.14、2中,最小的数是() A.0B.C.﹣3.14D.2 2.(3分)据有关部门统计,2022年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为() A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108 3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是() A.B.C.D. 4.(3分)数据1、5、7、4、8的中位数是() A.4B.5C.6D.7 5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是() A.圆B.菱形C.平行四边形D.等腰三角形 6.(3分)不等式3x﹣1≥x+3的解集是() A.x≤4B.x≥4C.x≤2D.x≥2 7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为() A.B.C.D. 8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是() A .30° B .40° C .50° D .60° 9.(3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) A .m < B .m ≤ C .m > D .m ≥ 10.(3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A →B →C →D 路径匀速运动到点D ,设△P AD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( ) A . B . C . D . 二、填空题(共6小题,每小题3分,满分18分) 11.(3分)同圆中,已知弧AB 所对的圆心角是100°,则弧AB 所对的圆周角是 . 12.(3分)分解因式:x 2﹣2x +1= . 13.(3分)一个正数的平方根分别是x +1和x ﹣5,则x = . 14.(3分)已知+|b ﹣1|=0,则a +1= . 15.(3分)如图,矩形ABCD 中,BC =4,CD =2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π) 16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y =(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第 二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为. 三、解答题(一) 17.(6分)计算:|﹣2|﹣20220+()﹣1 18.(6分)先化简,再求值:?,其中a=. 19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°, (1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹) (2)在(1)条件下,连接BF,求∠DBF的度数. 20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元? (2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片? 21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图. (1)被调查员工人数为人: (2)把条形统计图补充完整; (3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人? 22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE. (1)求证:△ADE≌△CED; (2)求证:△DEF是等腰三角形. 23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B. (1)求m的值; (2)求函数y=ax2+b(a≠0)的解析式; (3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由. 24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E. (1)证明:OD∥BC; (2)若tan∠ABC=2,证明:DA与⊙O相切; (3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长. 25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC. (1)填空:∠OBC=°; (2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度; (3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少? 一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的. 1.C 根据实数比较大小的方法,可得 ﹣3.14<0<<2, 所以最小的数是﹣3.14. 故选:C. 2.A 14420000=1.442×107, 故选:A. 3.B 根据主视图的定义可知,此几何体的主视图是B中的图形, 故选:B. 4.B 将数据重新排列为1、4、5、7、8, 则这组数据的中位数为5 故选:B. 5.D A、是轴对称图形,也是中心对称图形,故此选项错误; B、是轴对称图形,也是中心对称图形,故此选项错误; C、不是轴对称图形,是中心对称图形,故此选项错误; D、是轴对称图形,不是中心对称图形,故此选项正确. 故选:D. 6.D 移项,得:3x﹣x≥3+1, 合并同类项,得:2x≥4, 系数化为1,得:x≥2, 故选:D. 7.C ∵点D、E分别为边AB、AC的中点, ∴DE为△ABC的中位线, ∴DE∥BC, ∴△ADE∽△ABC, ∴=()2=. 故选:C. 8.B ∵∠DEC=100°,∠C=40°, ∴∠D=40°, 又∵AB∥CD, ∴∠B=∠D=40°, 故选:B. 9.A ∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0, ∴m<. 故选:A. 10.B 分三种情况: ①当P在AB边上时,如图1, 设菱形的高为h, y=AP?h, ∵AP随x的增大而增大,h不变, ∴y随x的增大而增大, 故选项C不正确; ②当P在边BC上时,如图2, y=AD?h, AD和h都不变, ∴在这个过程中,y不变, 故选项A不正确; ③当P在边CD上时,如图3, y=PD?h, ∵PD随x的增大而减小,h不变, ∴y随x的增大而减小, ∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同, 故选项D不正确; 故选:B. 二、填空题(共6小题,每小题3分,满分18分) 11.50° 弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°. 故答案为50°. 12.(x﹣1)2 x2﹣2x+1=(x﹣1)2. 13.2 根据题意知x+1+x﹣5=0, 解得:x=2, 故答案为:2. 14.2 ∵+|b﹣1|=0, ∴b﹣1=0,a﹣b=0, 解得:b=1,a=1, 故a+1=2. 故答案为:2. 15.π 连接OE,如图, ∵以AD为直径的半圆O与BC相切于点E, ∴OD=2,OE⊥BC, 易得四边形OECD为正方形, ∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π. 故答案为π. 16.(2,0) 。

下载提示
相似文档
正为您匹配相似的精品文档