第五章 留数定理习题及其解答 设有,能否说为本性奇点为什么 答:这个级数由两部分组成:即第一个级数当即时收敛,第二个级数当即时收敛于是所给级数在环域内收敛(成立),且和函数显然是的解析点可见此级数并非在的去心领域内成立故不能由其含无限多个负幂项断定的性质注: 此例说明,判断孤立奇点类型虽可从的Laurent展开式含有负幂项的情况入手,但切不可忘掉必须是在去心领域内的Laurent展式,否则与是什么性质的点没有关系 设在全平面解析,证明:若为的可去奇点,则必有(常数);若为的级极点,则必为次多项式:;除此之外,在处的Taylor展式必有无限多项系数证: 因为在全平面解析,所以在邻域内Taylor展式为且注意到这Taylor级数也是在去心邻域内的Taylor级数所以,当在的可去奇点<═>在去心邻域内Laurent展示无的正幂项,即故(常数);当为的级极点在去心邻域内Laurent展示中只含有限个的正幂项,且最高正幂为次() 即为次多项式;除去上述两种情况, 为的本性奇点在去心邻域内Laurent展开式中含有无限多个正幂项,因此在中,有无限多个项的系数不为0注 (1). 对本题的结论,一定要注意成立的条件为在全面解析,否则结论不成立。
例:在内解析(与全平面解析仅差一个点!),且以为可去奇点,但又在内解析,且以=为一级极点,但它并不是一次多项式,也不可能与任何一次多项式等价(它以=0为本性奇点)同样地, 在内解析,以为本性奇点,但它不是超越整函数,(它不是整函数);(2). 本题证明完全依赖于无穷远点性态的分类定义,同时注意,全平面解析的函数在邻域内Taylor展示的收敛半径R= +,从而此Taylor展示成立的区域恰是的去心领域,即同一展示对而言即是其去心领域内的Laurent展式 证明:如果为解析函数的阶零点,则必为的阶零点>1)证 因为在点解析,且为其阶零点故在的邻域内Taylor展式为其中由Taylor级数在收敛圆内可逐项微分性质有 右端即为在内的Taylor展开式,由解析函数零点定义知,以为阶零点注 本证明仅用到解析函数零点定义及幂级数在收敛圆内可逐项求导的性质. 判断下列函数在无穷远点的性态1) 2) 3) 4)解 1) 因为在内解析,且所给形式即为它在该环域内的Laurent展式,所以为的一级极点(为一级极点).2) 因为在内解析,且在此环域内有 即在的去心邻域里的Laurent展式中含有无限多个的正幂项,故为的本性奇点(0为二级极点)。
3) 因为在处解析,以为本性奇点在中令,得为的本性奇点,即为的本性奇点4) 令,得,即∴ 为的零点,且∵ ∴ 为的一级极点且 ,故,为的非孤立奇点注 当为孤立奇点时,一般直接从函数在的去心邻域内的Laurent展示入手,判断其类型,但对3),因有一定的特性,故可利用这一特性进行判断 .求出下列函数的奇点,并对孤立奇点指出类型1) 2) 3) 4) 5) 6)(答 1)0,均为本性奇点;2)0为一级极点,为本性奇点;3)0为一级极点,为本性奇点;4)为唯一奇点,且为本性奇点;5)0为非独立奇点,为一级极点,为可去奇点;6)0为可去奇点,为本性奇点) 计算下列各函数在指定点的留数:1) 2) ,在处解 1) 因为为的一级极点,故由留数计算规则有对,由留数计算规则有 又 在扩充复平面内仅有孤立奇点,故留数和为0,于是可得 2) ,由留数定义,等于在处Taylor展式中项的系数 有 ∴ 注意 于扩充复平面内仅有两个奇点,其留数和为0,故。
计算下列函数在处的留数1) ;2) 在解 1) 在扩充平面仅有两个奇点注意在内Taylor展式中只有偶次项故 在内Laurent展式中无项,即且环域也是的去心邻域故上述展式也是处的Laurent展式因此 2) , 为自然数由留数定义知,等于在内Lauernt展式中的系数注意在该环域有 计算 【答案 .求下列函数在指定点的留数1)在点 2)在点 3)在点答:1)1;2)-1;3)0;) 计算函数的留数解】 ∵ 为的一级极点,()∴ 为求,注意为自然数,只要求在点邻域Taylor展式中的系数即可∵∴,故又由于扩充复平面仅有奇点,故 计算下列积分1)2)解 1)因为积分路径位于环域内,且围绕,简单、正向、闭,在该环域内解析,故可知所求积分为 其中为在环域内Lauernt展式项的系数 因此时, (上述展式中无偶次幂项). 时,时, (无偶次幂项).时,2) 同1)道理,但积分路径位于环域内,且围绕,简单、正向、闭,在此环域内解析所以 其中为在环域内Laurent展式中项系数。
因而 时, 时,时, (展式中无偶次幂项) 计算下列积分(积分路径均为正向); 解 因为在内解析路径位于该环域内,围绕,简单、正向、闭,故由留数定义有 这里为在内Laurent展式(即在内Taylor展式)的项系数,由幂级数乘法易求得:即计算积分 (积分方向为正方向) 解: 当时为的一级极点,故 当时,积分路径内围绕了的个一级极点 由留数定理有 因为 所以 计算定积分解:被积式为的有理函数,故令,则,代入原积分,得 则内包围的一个奇点,且为一级极点故,由留数定理有 计算定积分解:,设则为的有理函数,且分母次数为4,分子次数为0且在实轴上无奇点,在上半平面的奇点为,均为一级极点∴ 计算定积分解:首先注意 则 故只要计算第二项的值即可:设的分母次数比分子次数高1,在实轴上无奇点,在上半平面有一个一级极点∴ 由此 , 于是 注: 要注意是一实变量复值积分,且实部为奇函数,虚部为偶函数,按实部等于实部,虚部等于虚部得最后结果。
计算实积分 【答案 (1);(2)】 计算积分【答案 】 计算积分的值【答案 】 计算积分的值【答案】若函数 解析,且,试求.【答案 】 利用复变函数环路积分方法,证明级数 (提示:考虑函数 沿着仅包围某一个奇点的环路的积分)计算机仿真编程实践 计算机仿真计算(利用Matlab计算机求解出留数,然后求积分) 计算机仿真计算 (1)在0点 (2)在0点处的留数答案(1)1; (2)) 利用计算机仿真编程的方法计算积分(积分方向为正方向) 为自然数). 利用计算机仿真计算积分 ,并验证典型实例结果。