高层建筑施工4知识讲稿

上传人:yuzo****123 文档编号:267506098 上传时间:2022-03-18 格式:PPT 页数:150 大小:667KB
返回 下载 相关 举报
高层建筑施工4知识讲稿_第1页
第1页 / 共150页
高层建筑施工4知识讲稿_第2页
第2页 / 共150页
高层建筑施工4知识讲稿_第3页
第3页 / 共150页
高层建筑施工4知识讲稿_第4页
第4页 / 共150页
高层建筑施工4知识讲稿_第5页
第5页 / 共150页
点击查看更多>>
资源描述

《高层建筑施工4知识讲稿》由会员分享,可在线阅读,更多相关《高层建筑施工4知识讲稿(150页珍藏版)》请在金锄头文库上搜索。

1、单击此处编辑母版标题样式单击此处编辑母版副标题样式* *1 1高层建筑施工绪论 高层建筑的定义1972 国际高层建筑会议 第一类高层建筑:916层(最高到50m); 第二类高层建筑:1725层(最高到75m); 第三类高层建筑:2640层(最高到100m); 超高层建筑: 40层以上(高度100m以上)。民用建筑设计通则(JGJ137-87):10以上的住宅及总高度超过24m的公共建筑及综合建筑。 2 高层建筑的发展 我国古代:高塔 砖砌或木制的筒体结构 高层框架结构 国外古代:砖石承重结构 壁厚,使用空间小. 近代高层建筑:框架结构(钢、钢筋混凝土) 剪力墙、钢支撑、筒体 32. 地下水控制

2、与基坑开挖 地下水控制 边坡稳定 基坑土方开挖 52.1地下水控制 为什么必须进行地下水控制? 补偿性基础 地下水位较高的软土地区 流砂 边坡失稳 地基承载力下降 降水:集水明排和井点降水 截水 回灌 6 补偿性基础(compensated foundation) 又称浮基础。在结构设计中使建筑物的重量约等于建筑位置挖去土重(包括水重)的基础。当建筑物的重量等于挖去的土重时,称“全补偿性基础”,此时土中的应力无变化;如挖去的土重只相当于建筑物的部分重量时,称“部分补偿性基础”。可减少建筑物的沉降,充分利用地下空间。由于开挖较深,施工较困难,需考虑基坑的支护结构、降低地下水、防止坑底隆起和管涌等

3、问题。高层建筑中常用。 7 水在土中渗流的基本规律 达西定律: v=Q/A=k(H/L)=ki 一维渗流情况(图2-1) Q=k(H/L)A 渗透系数:k (m/d,cm/s)渗流/流线/层流/紊流/物理意义/透水性 渗流速度v(m/d,cm/s):v=Q/A=k(H/L) 或v=ki 水力梯度:i=H/L 两个问题: A、L、v 适用于砂及其他较细颗粒的土中,孔隙较大时产生紊流;Ip特别大的粘土:v=k(i-i)一、地下水的基本特性 8 等压流线与流网 水在土中稳定渗流(水流情况不随时间而变,土的孔隙比和饱和度不变,流入任意单元体的水量等于自单元体流出的水量以保持平衡),地下水头值相等的点连

4、成的面,称为“等水头面”,在平面或剖面上表现为“等水头线”(等势线,等压流线)。 由等压流线与流线所组成的网称为“流网”。等压流线与流线正交。 潜水与层间水(图2-4)P9 潜水:从地表至第一层不透水层之间含水层中所含的水。水无压力,重力水。 层间水:夹于两不透水层之间含水层中所含 的水。无压层间水和 承压层间水 9二、动水压力和流砂 动水压力 单位体积土中土颗粒骨架所受到的压力总和。(kN/m3) GD=-T=-Wi (图2-5 动水压力原理图 P10) 流砂 产生条件: GDW 多发生在颗粒级配均匀而细的粉、细砂等砂性土中。粘土和粉质粘土、砾石均不易发生流砂。 危害:基坑泥泞、坍塌、基础滑

5、移 防止措施:降水和防水帷幕 10三、降低地下水的方法 轻型井点:一层降水深度不超过6m 确定井点系统的布置方式 确定基坑的计算图形面积 计算涌水量: 单井涌水量:无压完整井: 群井涌水量 无压完整井: 11 无压非完整井: 承压完整井: 承压非完整井: 基坑的假想半径x0:对于矩形基坑a/b5时, 抽水影响半径R: 抽水影响半径深度H0:查表 12 井管数量:n=Q/q 井管平均间距: 校核y0: 13 喷射井点:820m k=0.120m/d 主要设备:喷射井管、高压水泵(或空气压缩机)和管路系统。 工作原理:图2-6、2-7 P12 井点布置:b10m双排布置;环状布置。井点间距23.5

6、m。 井点系统的安装与使用: 施工工艺程序: 注意事项 : 井点堵塞:原因、预防 喷射扬水器失效、井点倒灌:原因、预防 工作水压力升不高:原因、预防 14 电渗井点 在降水井点管的内侧打入金属棒(钢筋、钢管等),连以导线。以井点管为阴极,金属棒为阳极,通入直流电后,土颗粒自阴极向阳极移动,称电泳现象,使土体固结;地下水自阳极向阴极移动,称电渗现象,使软土地基易于排水。用于k0.1m/d的土层。 深井井点 在深基坑周围埋置深于基底的井管,依靠深井泵或深井潜水泵将地下水从深井内扬升到地面排出,使地下水位降至坑底以下。 适用于k较大(10250m/d);土质为砂土、碎石土;地下水丰富、降水深(105

7、0m)、面积大的情况。 15 真空深井泵: 设备:井管、滤头、电动机和真空泵。 也适用于低渗透性的粉砂、粉土和淤泥质粘土。降水深度达818m,降水服务范围达200m2左右。 深井井点系统设备: 深井、井管、深井泵和集水井等。 深井井点布置:200250m2 深井井点埋设与使用 施工工艺程序: 井点埋设与使用阶段的注意事项 : 16四、截水 截水帷幕:在基坑开挖前沿基坑四周设置隔水围护壁(亦称隔水帷幕)。 类型:水泥土搅拌桩挡墙、高压旋喷桩挡墙、地下连续墙。 作用:挡水和档土 厚度:满足防渗要求,k1.0边坡稳定,K=1.0极限平衡状态,K1.0边坡失稳。) ONiTiWi 22 Bishop法

8、 考虑竖面上的法向力和切向力。 Taylor法 该法建立在总应力基础上,并假定内聚力不随深度变化。根据理论计算结果绘制成图表(稳定系数Ns、坡角),利用该图表可以分析简单边坡的稳定。 Ns=Hc/c Hc-边坡的临界高度 232.3深基坑土方开挖 土方开挖方案 无支护结构的基坑开挖:放坡开挖 特点:面积大,四周空旷 上海市标准基坑工程设计规程规定:开挖深度不超过4.0m的基坑,当场地允许、经验算能保证土坡稳定时,可采用放坡开挖;开挖深度不超过4.0m的基坑,有条件采用放坡开挖时,宜设置多级平台分层开挖,每级平台的宽度不宜小于1.5m。 地下水位在坑底以上,开挖前采用井点法坑外降水。 护面措施

9、24 有支护结构的基坑开挖:垂直开挖 盆式开挖:先挖除基坑中间部分的土方,后挖除挡墙四周土方的开挖方式。 优点:挡墙的无支撑暴露时间短,利用挡墙四周所留土堤阻止挡墙的变形。 缺点:挖土及土方外运速度较岛式开挖慢。 多用于较密支撑下的开挖。 工程实例:上海香港广场基坑开挖 图2-93 岛式开挖:保留基坑中心土体,先挖除挡墙四周土方的开挖方式。 优缺点 常用于无内撑围护开挖(如土层锚杆)或采用边桁架等大空间支撑系统的基坑开挖 。 挖土机械及土方外运 25 土方开挖注意事项 基坑开挖的时空效应 先撑后挖,严禁超挖 防止坑底隆起变形过大 防止边坡失稳 防止桩位移和倾斜 对邻近建(构)筑物及地下设施的保

10、护 积极保护法 工程保护法 地基加固、结构补强、基础托换、隔断法、开挖期跟踪注浆、施加支撑预应力、协调施工进度 26 安全技术 基坑工程安全管理 基坑开挖安全技术 273 深基坑的支护结构 支护结构的选型 挡墙的选型 支撑(或拉锚)的选型 支护结构的计算 支护结构的破坏形式与计算内容 重力式支护结构计算 非重力式支护结构计算 支护结构的施工 深层搅拌水泥土桩挡墙(水泥土挡墙式支护结构) 钢板桩(板桩式挡墙) 钻孔灌注桩(排桩式挡墙) SMW工法施工(组合式) 支护结构的监测 28 深层搅拌水泥土桩 水泥土墙式 高压旋喷桩 钢板桩 板桩式 钢筋混凝土板桩 型钢横挡板 钢管桩、预制钢筋混凝土桩 排

11、桩式 钻孔灌注桩 支护结构 排桩与板墙式 挖孔灌注桩体系 现浇地下连续墙 板墙式 预制装配式地下连续墙 SMW工法 组合式 高应力区加筋水泥土墙 土钉墙 边坡稳定式 喷锚支护 逆作拱墙式 293.1支护结构的选型 挡墙的选型 钢板桩 钢筋混凝土板桩 钻孔灌注桩挡墙 H型钢支柱、木挡板支护挡墙 地下连续墙 深层搅拌水泥土桩挡墙(重力式挡墙) 旋喷桩挡墙(重力式挡墙) 土钉墙 30 支撑(拉锚)的选型 基坑内支撑和基坑外拉锚内支撑: 钢结构支撑 钢管支撑 H型钢支撑 钢筋混凝土支撑 313.2支护结构的计算重力式支护结构 强度破坏: 稳定性破坏: 倾覆 滑移 土体整体滑动失稳 坑底隆起 管涌非重力

12、式支护结构 强度破坏: 拉锚破坏或支撑压曲 支护墙底部走动 支护墙的平面变形过大或弯曲破坏 稳定性破坏: 墙后土体整体滑动失稳 挡墙倾覆 坑底隆起 管涌 32 破坏形式 33 破坏形式 34 非重力式支护结构计算1.支护结构承受的荷载 土压力 Pa=Htg2(45-/2)-2c tg(45-/2) Pp=Htg2(45+/2) +2c tg(45+/2) 水压力 35 墙后地面荷载引起的附加荷载均布荷载q:e2=q tg2(45-/2)距离支护结构一定距离有均布荷载: h1=l1Htg2(45+/2) e2=q tg2(45-/2)距离支护结构一定距离有集中荷载 362.支护结构的强度计算 中

13、小型工程和非粘性土:等值梁法 粘性土: (刚度较小的钢板桩、钢筋混凝土板桩) 弹性曲线法、竖向弹性地基梁法 (刚度较大的灌注桩、地下连续墙) 竖向弹性地基梁法 有限元法:电算 37 1.悬臂式钢板桩 通过试算确定埋入深度t1 将试算求得之t1增加15%,作为 实际所需的入土深度t,以确保 板桩的稳定。 通过试算求入土深度t2处剪力 为零的点g 计算最大弯矩 计算板桩截面EAEPfhegdbat2t1tH 38 2.单锚(支撑)板桩 单锚浅埋板桩: ea=(H+t)Ka ep=tKp MA=0: X=0: MmaxHtep-eaea(Kp-Ka)RaAEpEa 39 单锚深埋板桩:等值梁法 基本

14、原理:ab梁一端固定,另一端简支,弯矩图的正负弯矩在c点转折。若将ab梁在c点切断,并于c点置一自由支承,形成ac梁,则ac梁上的弯矩将保持不变,即称ac梁为ab梁上ac段的等值梁。tt0yxt- t0PaP0abacb等值梁原理板桩上土压力分布图ABCDHPaP0板桩弯矩图等值梁 40 在计算中考虑板桩墙与土的磨擦作用,将板桩墙前与墙后的被动土压力分别乘以修正系数K和K。对主动土压力则不予折减。 板桩墙前:Kp=K*Kp=Ktg(45+/2) 板桩墙后:Kp=K*Kp=Ktg(45+/2) 步骤: 计算作用于板桩上的土压力强度,并绘出土压力分布图。t0深度以下的土压力分布可暂不绘出。 计算板

15、桩墙上土压力强度等于零的点离挖土面的距离y: Kpy=Ka(H+y)=Pb+Ka y=Pb/(Kp-Ka) 按简支梁计算等值梁的最大弯矩和两个支点的反力。 计算最小入土深度t0: t0=y+x=y+6P0/(Kp-Ka) P0 x= (Kp-Ka)x2/6 实际入土深度t=K2*t0 K2(1.11.2) 41 3.多锚(支撑)板桩:太沙基皮克实测侧压力基 础上的近似方法 支撑(锚杆)的布置 等弯矩布置 等反力布置 腰梁计算: 板桩入土深度计算:盾恩近似法和等值梁法 42 P40 1.嵌固深度计算(1)悬臂式支护结构挡墙的嵌固深度hd计算:图2-32(2)单支点(3)多支点2.内力与变形计算:

16、各计算工况决定(图2-34)(1)悬臂式支护结构挡墙的弯矩Mc和剪力Vc的计算(2)有支点的支护结构挡墙的弯矩Mc和剪力Vc的计算3.结构计算:(1)内力及支点力设计值的计算(2)截面承载力计算 433.支护结构的稳定验算 整体滑动失稳验算 悬臂式支护结构:条分法 单锚式支护结构:一般不验算 多层支撑(拉锚)式支护结构:一般不验算;圆弧滑动 坑底隆起验算:开挖较深的软粘土基坑时 计及墙体极限弯矩的坑底隆起验算 太沙基和派克考虑挡墙抵抗弯矩的验算基坑的方法 同时考虑c、的坑底隆起验算法 Caguot验算基坑稳定性公式 44 管涌验算 j管涌 Kj K=1.52.0 抗管涌安全系数j =iw=h/(h+2t)w不发生管涌的条件: Kh/(h+2t)w t (Kh w - h)/2 4.基坑周围土体变形计算jt/2h t 45 重力式支护结构计算1.滑动稳定性验算 Kh-抗.滑动稳定安全系数,Kh1.2;基坑边长20m时, Kh1.0。 W-墙体自重(kn/m) -基底墙体与土的摩擦系数2.倾覆稳定性验算 Kq-抗.滑动稳定安全系数,Kq1.2;基坑边长20m时, Kq1.0。 b、hp、

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号