4风力发电机组控制技术上课讲义

上传人:yuzo****123 文档编号:242869660 上传时间:2022-01-19 格式:PPT 页数:65 大小:2.43MB
返回 下载 相关 举报
4风力发电机组控制技术上课讲义_第1页
第1页 / 共65页
4风力发电机组控制技术上课讲义_第2页
第2页 / 共65页
4风力发电机组控制技术上课讲义_第3页
第3页 / 共65页
4风力发电机组控制技术上课讲义_第4页
第4页 / 共65页
4风力发电机组控制技术上课讲义_第5页
第5页 / 共65页
点击查看更多>>
资源描述

《4风力发电机组控制技术上课讲义》由会员分享,可在线阅读,更多相关《4风力发电机组控制技术上课讲义(65页珍藏版)》请在金锄头文库上搜索。

1、风力发电机组控制技术第一章 概述第二章 风力机基本理论第三章 风力发电机组控制第四章 典型风力发电机组控制系统 (定桨距机组) (变桨距机组) (变速机组)第五章 现代控制理论及其在风力发电中的应用主要内容第一章 概述按风轮桨叶分类:定桨型、变桨型;按风轮转速分类:定速型、变速型;按传动机构分类:齿轮箱升速型、直驱型;按发电机分类:异步型、同步型;按并网方式分类:并网型、离网型。二、风力发电发展现状 控制系统是风力机组可靠运行以及实现最佳运行的可靠保证。国内已具备桨叶、发电机、齿轮箱、变距轴承、偏航轴承和主轴承等关键部件的开发能力。控制系统、变频器和变桨系统还有待完善。一、风力发电机组及其分类

2、三、风力发电发展趋势 从国内外近几年风电产业发展看,随着风电产业的不断发展,风力机组控制技术也在不断发展,以满足其自身对风速变化、成本、环境及稳定运行等各方面的要求,主要发展趋势包括以下几个方面:变桨距调节方式迅速取代失速调节方式;变速运行方式迅速取代恒速运行方式;机组规模向大型化发展;直驱永磁、异步双馈两种形式共同发展。第一章 概述基于双馈异步发电机(DFIG)三、风力发电发展趋势第一章 概述基于鼠笼异步发电机(SCIG)三、风力发电发展趋势第一章 概述基于永磁同步发电机(PMSG)三、风力发电发展趋势第一章 概述第一章 概述三、风力发电发展趋势第二章 风力机基本理论气流动能为 m 空气质量

3、,v 气流速度密度为的气流过面积 S 的气体体积为 V,M= V= Sv则单位时间内气流所具有的动能为理想风轮与贝兹(Betz)理论:前后空气体积相等:S1v1=Sv=S2v2根据牛顿第二定律,单位时间内风轮上的受力 F= mv1-mv2= Sv(v1-v2)风轮吸收的功率P=Fv= Sv2 (v1-v2)风轮吸收的功率又等于风轮前后动能(单位时间)的变化:令两式相等,得 经过风轮风速变化产生的功率为其最大功率可令 得 ,代入后得到的最大理想功率为与气流扫掠面积风的能量相比,可得风力机的理论最大效率:一、风力机能量转换过程S1v1SvS2v2第二章 风力机控制 有限叶片数由于较大的涡流影响将造

4、成一定的能量损失,使风力机效率有所下降。实际风力机曲线如下图所示:Betz极限理想的Cp曲线实际的Cp曲线失速损失型阻损失0一、风力机能量转换过程1、风能利用系数 :风力机的实际功率其中CP为风能利用系数,它小于0.5932、叶尖速比为了表示风轮在不同风速中的状态,用叶片圆周速度与风速比来衡量,称叶尖速比二、风力机的主要特性系数第二章 风力机基本理论第二章 风力机基本理论二、风力机的主要特性系数第二章 风力机基本理论二、风力机的主要特性系数风力机参数关系曲线图第二章 风力机基本理论二、风力机的主要特性系数风力机参数关系曲线图第二章 风力机基本理论二、风力机的主要特性系数4、升力系数和阻力系数升

5、力系数与阻力系数是随攻角变化的升力系数随攻角的增加而增加,使得桨叶的升力增加,但当增加到某个角度后升力开始下降;阻力系数开始上升。出现最大升力的点叫失速点。截面形状(翼型弯度、翼型厚度、前缘位置)、表面粗糙度等都会影响升力系数与阻力系数。对有限长桨叶,叶片两端会产生涡流,造成阻力增加。二、风力机的主要特性系数-30o -20o -10o 0o 10o 20o 30o 40o0.80.60.40.2-0.2第二章 风力机基本理论 功率调节方式主要有定桨距失速调节、变桨距调节、主动失速调节三种方式 。失速调节风力发电机风轮气流特性三、风轮气动功率调节第二章 风力机基本理论气动功率调节原理图 三、风

6、轮气动功率调节第二章 风力机基本理论三、风轮气动功率调节第二章 风力机基本理论 当风穿过风轮扫风面后,由于风轮运动和塔架的存在,使得风速受到影响,进而影响风力机捕获风能的效率。其中主要有以下方面的影响:1、风剪切影响:叶片旋转过程中,单个叶片会因为高度不断变化,使风速产生周期性的变化,进而使得气动转矩产生周期性的变化;2、塔影效应:叶片旋转过程中,会周期性的经过塔架,空气流在叶片与塔架之间产生绕流、紊流等作用,同样会影响气动转矩,对下风向风力机尤其重要。3、尾流效应:相邻的风力机之间也会相互影响,前面的风力机风轮旋转产生的气流变化会对后面的风力机受到的风速特性产生影响,即尾流效应影响。三、风轮

7、气动功率调节第二章 风力机基本理论一、机组的总体结构第三章 风力发电机组控制控 制 系 统风轮增速器发电机主继电器主开关熔断器变压器晶闸管电网风变桨风速转速并网功率无功补偿风定桨:1.5-2.5叶尖扰流器起脱网停机气动刹车,一般采用双速发电机来提高效率。变桨:随风速改变攻角,超过额定风速保持额定功率。设计风轮转速:20-30r/min,通过增速器与发电机匹配。采用晶闸管软切入并网,并网容易,扰动小。含微处理器的控制系统。二、典型风电机组的控制要求定桨距失速型机组监控系统任务:控制风力发电机并网与脱网;自动相位补偿;监视机组的运行状态、电网状况与气象情况;异常工况保护停机;产生并记录风速、功率、

8、发电量等机组运行数据。全桨叶变距型机组监控系统任务:控制风力发电机并网与脱网;优化功率曲线;监视机组的运行状态、电网状况与气象情况;异常工况保护停机;产生并记录风速、功率、发电量等机组运行数据。基于变速恒频技术的变速型机组监控系统任务除去上述功能外主要包括:基于微处理器及先进IGBT电力电子技术的发电机转子变频励磁;脉宽调制技术产生正弦电压控制发电机输出电压与频率质量;低于额定风速的最大风能(功率)控制与高于额定风速的恒定额定功率控制。第三章 风力发电机组控制三、风力发电机组的控制技术定桨距失速型机组解决了风力发电机组的并网问题和运行安全性与可靠性问题,采用了软并网技术、空气动力刹车技术、偏航

9、与自动解缆技术。固定的节距角及电网频率决定的转速,简化了控制与伺服驱动系统。全桨叶变距型机组启动时可进行转速控制,并网后可进行功率控制。电液伺服机构与闭环变距控制提高了机组效率。基于变速恒频技术的变速型机组采用变速风力发电机。根据风速信号控制,低于额定风速跟踪最佳功率曲线,高于额定风速柔性保证额定功率输出。改善了高次谐波对电网影响,提高了功率因数,高效高质地向电网供电。第三章 风力发电机组控制四、风力发电机组的控制系统结构用户界面输入用户指令,变更参数显示系统运行状态、数据及 故障状况发电机控制软并网变频器励磁调节主控制器运行监控,机组起/停电网、风况监测无功补偿根据无功功率信号分组切入或切出

10、补偿电容变距系统转速控制功率控制液压系统刹车机构压力保持变距机构压力保持制动系统机械刹车机构气动刹车机构调向系统偏航自动解除电缆缠绕第三章 风力发电机组控制 目前绝大多数风力发电机组的控制系统都采用集散型或称分布式控制系统(DCS)工业控制计算机。采用分布式控制最大优点是:许多控制功能模块可以直接布置在控制对象的位置。就地进行采集、控制、处理,避免了各类传感器、信号线与主控制器之间的连接;同时DCS现场适应性强,便于控制程序现场调试及在机组运行时可随时修改控制参数;并与其他功能模块保持通信,发出各种控制指令。四、风力发电机组的控制系统结构第三章 风力发电机组控制控制系统的发展: (计算机直接控

11、制)(联网计算机共同分担工作负荷) (网络配备传感器和执行器成为独立的结点)(性能单一不可靠,计算机应用局限于监控模式)四、风力发电机组的控制系统结构第三章 风力发电机组控制风力发电机组控制系统组成: 传感器 执行机构 包括软/硬件处理器系统四、风力发电机组的控制系统结构第三章 风力发电机组控制一、定桨距风力发电机组的特点1、风轮结构主要特点:桨叶与轮毂的连接是固定的,桨叶的迎风角度不随风速变化而变化。需解决的问题:高于额定风速时桨叶需自动将功率限制在额定功率附近(失速特性)。 脱网(突甩负荷)时桨叶自身具备制动能力。 添加了叶尖扰流器,降低机械刹车结构强度,2、桨叶的失速调节原理因桨叶的安装

12、角不变,风速增加升力增加升力变缓升力下降阻力增加叶片失速叶片攻角由根部向叶尖逐渐增加,根部先进入失速,随风速增大逐渐向叶尖扩展。失速部分功率减少,未失速部分功率仍在增加,使功率保持在额定功率附近。3、叶尖扰流器叶尖部分可旋转的空气阻尼板,正常运行时,在液压控制下与叶片成为整体,风力机脱网时液压控制指令将扰流器释放并旋转80o90o,产生阻力停机,即产生空气动力刹车。空气动力刹车是按失效思想设计,即起到液压系统故障时的机组停机保护。4、双速发电机小发电机功率曲线大发电机功率曲线切换点风速功率如6极200kW和4极750kWP1P2第四章 典型风力发电机组控制系统(定桨距机组)一、定桨距风力发电机

13、组的特点5、功率输出功率的输出主要决定于风速,叶片的失速特性功率曲线是在标准空气密度=1.225kg/m3测测出的,一般温度变变化10oC,空气密度变化4%。因此气温升高,密度下降,输出功率减少。750kW机组可能会出现3050kW的偏差,6、节距角与额定转速的设定对功率输出的影响由于机组的桨叶节距角和转速都是固定不变的,使机组功率曲线上只有一点有最大功率系数。额定转速低的机组,低风速下有较高的功率系数;额定转速高的机组,高风速下有较高的功率系数。即为双速电机依据。设计的最大功率系数并不出现在额定功率上,因风力发电机并不经常工作在额定风速点。定桨距风力发电机应尽量提高低风速的功率系数和考虑高风

14、速的失速性能。0 2 4 6 8 10 12 14 16 1810008006004002000.10.20.30.40.5功率输出/kW风速/(m/s)功率/kW第四章 典型风力发电机组控制系统(定桨距机组)二、定桨距风力发电机组的基本运行过程1、待机状态风速v3m/s但没达到切入转速或机组从小功率切出,没有并网的自由转动状态。控制系统做好切入电网的准备;机械刹车已松开;叶尖阻尼板已收回;风轮处于迎风状态;液压系统压力保持在设定值;风况、电网和机组的所有状态参数检测正常,一旦风速增大,转速升高,即可并网。2、风力发电机组的自启动及启动条件机组在自然风作用下升速、并网的过程。需具备的条件为:电

15、网:连续10分钟没有出现过电压、低电压;0.1秒内电压跌落小于设定值;电网频率在设定范围内;没有出现三相不平衡等现象。风况:连续10分钟风速在机组运行范围内(3.0m/s25m/s)机组:发电机温度、增速器油温在设定值范围以内;液压系统各部位压力在设定值以内;液压油位和齿轮润滑油位正常;制动器摩擦片正常;扭缆开关复位;控制系统DC24V、AC24V、DC5V、DC15V电源正常;非正常停机故障显示均已排除;维护开关在运行位置。第四章 典型风力发电机组控制系统(定桨距机组)二、定桨距风力发电机组的基本运行过程3、风轮对风偏航角度通过风向测定仪测定。10分钟调整一次,调整中释放偏航刹车。4、制动解

16、除 启动条件满足后,控制叶尖扰流器的电磁阀打开,压力油进入桨叶液压缸,扰流器被收回与桨叶主体合为一体。控制器收到扰流器回收信号后,压力油进入机械盘式制动器液压缸,松开盘式制动器。5、风力发电机组的并网 当转速接近同步转速时,三相主电路上的晶闸管被触发开始导通,导通角随与同步转速的接近而增大,发电机转速的加速度减少;当发电机达到同步转速时晶闸管完全导通,转速超过同步转速进入发电状态;1秒后旁路接触器闭合,电流被旁路,如一切正常晶闸管停止触发。第四章 典型风力发电机组控制系统(定桨距机组)三、风力发电机组的基本控制要求1、控制系统的基本功能根据风速信号自动进行启动、并网或从电网切出。根据风向信号自动对风。根据功率因数及输出电功率大小自动进行电容切换补偿。脱网时保证机组安全停机。运行中对电网、风况和机组状态进行监测、分析与记录,异常情况判断及处理。2、主要监测参数及作用电力参数:电网三相电压、发电机输出的三相电流、电网频率、发电机功率因数等。判断并网条件、计算电功率和发电量、无功补偿、电压和电流故障保护。发电机功率与风速有着固定的函数关系,两者不符可作为机组故障判断的依据。风力参数:风速;每

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号