《大数据安全技术应用发展调研分析报告》由会员分享,可在线阅读,更多相关《大数据安全技术应用发展调研分析报告(35页珍藏版)》请在金锄头文库上搜索。
1、大数据应用大数据安全技术应用发展调研分析报告设计单位: 建设单位: 编制日期:目录第一章 发展现状41.1. 应用背景41.2. 大数据应用51.3. 技术总体视图91.3.1. 平台安全101.3.2. 数据安全111.3.3. 隐私保护11第二章 面临问题132.1. 平台安全问题132.2. 数据安全问题162.3. 个人隐私安全挑战19第三章 大数据安全技术213.1. 平台安全技术213.2. 数据安全技术253.3. 个人隐私保护技术30第四章 发展总结32第五章 未来发展34第1章 发展现状1.1. 应用背景当前,全球大数据产业正值活跃发展期,技术演进和应用创新并行加速推进,非关
2、系型数据库、分布式并行计算以及机器学习、深度挖掘等新型数据存储、计算和分析关键技术应运而生并快速演进,大数据挖掘分析在电信、互联网、金融、交通、医疗等行业创造商业价值和应用价值的同时, 开始向传统第一、第二产业传导渗透,大数据逐步成为国家基础战略资源和社会基础生产要素。与此同时,大数据安全问题逐渐暴露。大数据因其蕴藏的巨大价值和集中化的存储管理模式成为网络攻击的重点目标,针对大数据的勒索攻击和数据泄露问题日趋严重,全球大数据安全事件呈频发态势。相应的,大数据安全需求已经催生相关安全技术、解决方案及产品的研发和生产,但与产业发展相比,存在滞后现象。习近平主席在中共中央政治局就实施国家大数据战略第
3、二次集体学习时指出,要构建以数据为关键要素的数字经济,推动实体经济和数字经济融合发展,推动互联网、大数据、人工智能同实体经济深度融合。同时,要切实保障国家数据安全。这要求我们必须坚持国家总体安全观,树立正确的网络安全观,坚持“以安全保发展,以发展促安全,” 充分发挥大数据在推动产业转型升级、提升国家治理现代化水平等方面重要作用的同时,深刻认识大数据安全的重要性和紧迫性,认清大数据安全挑战,积极应对复杂严峻的安全风险, 坚持安全与发展并重,加速构建大数据安全保障体系,保障国家大数据发展战略顺利实施。本报告首先从大数据带来的变革出发,探讨了大数据安全区别于传统安全的特殊内涵;然后聚焦技术领域,给出
4、大数据安全技术总体视图,分别从平台安全、数据安全和个人隐私安全三个方面梳理了大数据环境下面临的安全威胁以及相应的安全保障技术的发展情况;最后基于大数据安全技术发展现状,提出大数据安全技术未来发展方向与建议,为大数据产业和安全技术发展提供依据和参考。1.2. 大数据应用大数据在数量规模、处理方式、应用理念等方面都呈现了与传统数据不同的新特征。大数据是具有体量大、结构多样、时效强等特征的数据;处理大数据需采用新型计算架构和智能算法等新技术;大数据的应用强调以新理念应用于辅助决策、发现新知识,更强调在线闭环的业务流程优化。从安全视角看,大数据这些新特性,产生了哪些影响?(一)大数据已经对经济运行机制
5、、社会生活方式和国 家治理能力产生深刻影响,需要从“大安全”的视角认识和解决大数据安全问题大数据发展过程中,资源、技术、应用相依相生,以螺 旋式上升的模式发展。无论是商业策略、社会治理、还是国 家战略的制定,都越来越重视大数据的决策支撑能力。但也 要看到,大数据是一把双刃剑,大数据分析预测的结果对社会安全体系所产生的影响力和破坏力可能是无法预料和提 前防范的。例如,美国一款健身应用软件将用户健身数据的 分析结果在网络上公布,结果涉嫌泄露美国军事机密,这在 以往是不可想象的。未来,基于大数据的智能决策将会在经 济运行、社会生活、国家治理方面发挥更重要的作用,大数 据可能会对国家“11 种安全”的
6、方方面面产生更加深远的影响。因此,必须从“大安全”的视角审视大数据安全问题,必须站在国家总体安全观的高度,打破传统的重技术的安全保护思维模式,建立涉及经济、法律、技术等多角度全方位的大数据安全保障体系。(二)大数据正逐渐演变为新一代基础性支撑技术,大数据平台的自身安全将成为大数据与实体经济融合领域安 全的重要影响因素目前来看,大数据正在成为一种通用的数据处理技术,除推动人工智能、虚拟现实等新兴信息技术应用创新之外,互联网、大数据通过与实体经济的深度融合,正加速推进传统制造业向数字化、网络化、智能化发展。然而,在信息化和工业化融合业务繁荣发展的背后,安全问题如影随形。针对大数据平台的网络攻击手段
7、正在悄然变化,攻击目的已经从单纯地窃取数据、瘫痪系统转向干预、操纵分析结果,攻击效果已经从直观易察觉的系统宕机、信息泄露转向细小难以察觉的分析结果偏差,造成的影响可能从网络安全事件上升到工业生产安全事故。目前,传统基于监测、预警、响应的网络安全技术难以应对上述攻击变化,需要进行理念创新, 针对不断变化演进的网络攻击形态,设计建构更加完善的大数据平台安全保护体系,为上层跨行业跨领域的业务应用提供基础性安全保障。(三)大数据时代,数据在流动过程中实现价值最大化, 需要重构以数据为中心、适应数据动态跨界流动的安全防护体系大数据时代,数据作为一种特殊的资产,能够在流通和使用过程中不断创造新的价值。因此
8、,在大数据应用场景下, 数据流动是“常态”,数据静止存储才是“非常态”。同时,可以预见到,未来大数据业务环境将更加开放,业务生态将更加复杂,参与数据处理的角色将更多元,系统、业务、组织边界将进一步模糊,导致数据的产生、流动、处理等过程比以往更加丰富和多样。数据的频繁跨界流动,除可能导致传统的数据泄露风险外,还会引发新的安全风险。特别是在数据共享环节中,传统数据访问控制技术无法解决跨组织的数据授权管理和数据流向追踪问题,仅靠书面合同或协议难以实现对数据接收方的数据处理活动进行实时监控和审计,极易造成数据滥用的风险,最典型的案例即是今年曝光的“剑桥分 析”事件。未来,数据共享和流通将成为刚性业务需
9、求,传统 的静态隔离安全保护方法将彻底不能满足数据流动安全防护的需求,必须通过动态变化的视角分析和判断数据安全风险,构建以数据为中心的动态、连续的数据安全防护体系。(四)大数据推动数字经济新业态新模式蓬勃发展,广大民众却面临享受便捷化泛在化信息服务与保护个人信息 权利之间的两难抉择近年来,我国网络购物、移动支付、共享经济等数字经济新业态新模式发展迅猛,基于互联网、移动互联网、物联网的信息服务已经渗透到社会生活的方方面面,为广大民众提供便捷、高效、全天候的服务。以普惠金融为例,利用大数据对个人数据的挖掘和分析,能够帮助金融科技公司更好的理解用户需求,提供个性化定制服务;利用大数据进行金融风险控制
10、,能够实现流水线操作,减少经营成本,提高服务效率,提升用户体验。例如,某互联网金融服务企业推出的“310”个人信贷服务模式,即“3 分钟填表、1 分钟批贷、0人工干预,” 为用户提供了传统信贷服务无法比拟的业务体验,同时将业务成本从每单 2000 元降至 2.3 元。然而,用户享受便捷服务的代价是出让自己的个人信息权利。每日推荐、个人日报、免押租车等信息服务,都是基于大数据技术对用户个人数据进行挖掘分析,形成用户画像,进而提供的定制化服务。但大数据应用场景下,无所不在的数据收集技术、专业化多样化的数据处理技术,使得用户难以控制其个人信息的收集情境和应用情境,用户对其个人信息的自决权利自然被削弱
11、。特别是,企业间的数据共享日益频繁,利用大数据的超强分析能力对多源数据进行处理,能够将经过匿名化处理的数据再次还原,导致现有数据脱敏技术“失灵”,直接威胁用户的隐私安全。综上,大数据安全是涉及技术、法律、监管、社会治理等领域的综合性问题,其影响范围涵盖国家安全、产业安全和个人合法权益。同时,大数据在数量规模、处理方式、应用理念等方面的革新,不仅导致大数据平台自身安全需求发生变化,还带动数据安全防护理念随之改变,同时引发对高水平隐私保护技术的需求和期待。1.3. 技术总体视图如前所述,大数据安全是一个跨领域跨学科的综合性问题,可以从法律、经济、技术等多个角度进行研究。本报告以技术作为切入点,梳理
12、分析当前大数据的安全需求和涉及的技术,提出大数据安全技术总体视图,如图 1 所示。在绘制大数据安全技术总体视图的过程中,我们参考了 NIST 等国内外关于大数据技术参考架构的研究成果。考虑到大数据平台为上层应用系统提供存储和计算资源,是对数据进行采集、存储、计算、分析与展示等处理的工具和场所,因此, 我们以大数据平台为基本出发点,形成了大数据安全总体视图。在总体视图中,大数据安全技术体系分为大数据平台安全、数据安全和个人隐私保护三个层次,自下而上为依次承载的关系。大数据平台不仅要保障自身基础组件安全,还要为运行其上的数据和应用提供安全机制保障;除平台安全保障外,数据安全防护技术为业务应用中的数
13、据流动过程提供安全防护手段;隐私安全保护是在数据安全基础之上对个人敏感信息的安全防护。1.3.1. 平台安全大数据平台安全是对大数据平台传输、存储、运算等资源和功能的安全保障,包括传输交换安全、存储安全、计算安全、平台管理安全以及基础设施安全。传输交换安全是指保障与外部系统交换数据过程的安全可控,需要采用接口鉴权等机制,对外部系统的合法性进行验证,采用通道加密等手段保障传输过程的机密性和完整性。存储安全是指对平台中的数据设置备份与恢复机制,并采用数据访问控制机制来防止数据的越权访问。计算组件应提供相应的身份认证和访问控制机制,确保只有合法的用户或应用程序才能发起数据处理请求。平台管理安全包括平
14、台组件的安全配置、资源安全调度、补丁管理、安全审计等内容。此外,平台软硬件基础设施的物理安全、网络安全、虚拟化安全等是大数据平台安全运行的基础。1.3.2. 数据安全数据安全防护是指平台为支撑数据流动安全所提供的安全功能,包括数据分类分级、元数据管理、质量管理、数据加密、数据隔离、防泄露、追踪溯源、数据销毁等内容。大数据促使数据生命周期由传统的单链条逐渐演变成为复杂多链条形态,增加了共享、交易等环节,且数据应用场景和参与角色愈加多样化,在复杂的应用环境下,保证国家重要数据、企业机密数据以及用户个人隐私数据等敏感数据不发生外泄,是数据安全的首要需求。海量多源数据在大数据平台汇聚,一个数据资源池同
15、时服务于多个数据提供者和数据使用者,强化数据隔离和访问控制,实现数据“可用不可见”,是大数据环境下数据安全的新需求。利用大数据技术对海量数据进行挖掘分析所得结果可能包含涉及国家安全、经济运行、社会治理等敏感信息,需要对分析结果的共享和披露加强安全管理。1.3.3. 隐私保护本报告所提的隐私保护是指利用去标识化、匿名化、密文计算等技术保障个人数据在平台上处理、流转过程中不泄露个人隐私或个人不愿被外界知道的信息。隐私保护是建立在数据安全防护基础之上的保障个人隐私权的更深层次安全要求。然而,我们也意识到大数据时代的隐私保护不再是狭隘地保护个人隐私权,而是在个人信息收集、使用过程中保障数据主体的个人信
16、息自决权利。实际上,个人信息保护已经成为一个涵盖产品设计、业务运营、安全防护等在内的体系化工程,不是一个单纯的技术问题。但由于本报告重点聚焦大数据安全技术,因此在谈及数据主体的个人权益保护时,我们选择去繁从简,从研究方向更为清晰的隐私保护技术入手开展研究。II第2章 面临问题大数据安全威胁渗透在数据生产、采集、处理和共享等大数据产业链的各个环节,风险成因复杂交织;既有外部攻击,也有内部泄露;既有技术漏洞,也有管理缺陷;既有新技术新模式触发的新风险,也有传统安全问题的持续触发。本报告将聚焦于大数据本身面临的安全威胁,从大数据平台安全、数据安全和个人信息安全三个方面展开分析,确定大数据安全需求。2.1. 平台安全问题1、大数据平台在Hadoop 开源模式下缺乏整体安全规划, 自