高考数学知识点总结精华版 高中数学基础知识汇总

上传人:清晨86****784 文档编号:205196529 上传时间:2021-10-28 格式:DOC 页数:22 大小:925.50KB
返回 下载 相关 举报
高考数学知识点总结精华版 高中数学基础知识汇总_第1页
第1页 / 共22页
高考数学知识点总结精华版 高中数学基础知识汇总_第2页
第2页 / 共22页
高考数学知识点总结精华版 高中数学基础知识汇总_第3页
第3页 / 共22页
高考数学知识点总结精华版 高中数学基础知识汇总_第4页
第4页 / 共22页
高考数学知识点总结精华版 高中数学基础知识汇总_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《高考数学知识点总结精华版 高中数学基础知识汇总》由会员分享,可在线阅读,更多相关《高考数学知识点总结精华版 高中数学基础知识汇总(22页珍藏版)》请在金锄头文库上搜索。

1、高中数学知识归纳汇总 冲刺背诵篇第一部分 集合1理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是应变量的取值?还是曲线上的点? ;2数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3(1)含n个元素的集合的子集数为2n,真子集数为2n1;非空真子集的数为2n-2;(2) 注意:讨论的时候不要遗忘了的情况。(3)4是任何集合的子集,是任何非空集合的真子集。第二部分 函数与导数1映射:注意 第一个集合中的元素必须有象;一对一,或多对一。2函数值域的求法:分析法 ;

2、配方法 ;判别式法 ;利用函数单调性 ;换元法 ;利用均值不等式 ; 利用数形结合或几何意义(斜率、距离、绝对值的意义等);利用函数有界性(、等);导数法3复合函数的有关问题(1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式ag(x)b解出; 若fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域。(2)复合函数单调性的判定:首先将原函数分解为基本函数:内函数与外函数;分别研究内、外函数在各自定义域内的单调性;根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数的定义域是内函数的值域。4分段函数:值域

3、(最值)、单调性、图象等问题,先分段解决,再下结论。5函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的必要条件;是奇函数;是偶函数 ;奇函数在原点有定义,则;(扬州二模填空题第五题再去想一想)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6函数的单调性单调性的定义:在区间上是增函数当时有;在区间上是减函数当时有;单调性的判定 定义法:一般要将式子化为几个因式作积或作商的形式,以利于判断符号; 导数法(见导数部分); 复合函数法(见2 (2); 图像法。注:证明单调性主要用定义法和导数法。7函数的周期

4、性(1)周期性的定义:对定义域内的任意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期 ; ; ; 函数周期的判定定义法(试值) 图像法 公式法(利用(2)中结论) 与周期有关的结论或 的周期为;的图象关于点中心对称周期为2;的图象关于直线轴对称周期为2;的图象关于点中心对称,直线轴对称周期为4;8基本初等函数的图像与性质幂函数: ( ;指数函数:;对数函数:;正弦函数:;余弦函数: ;(6)正切函数:;一元二次函数:;其它常用函数: 正比例函数:;反比例函数:;特别的(其图像

5、就是双曲线只不过中心不在坐标原点) 函数;9二次函数:解析式:一般式:;顶点式:,为顶点;零点式: 。二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号。二次函数问题解决方法:数形结合;分类讨论。10函数图象: 图象作法 :描点法 (特别注意三角函数的五点作图)图象变换法导数法图象变换: 平移变换:,左“+”右“-”; 上“+”下“-”; 伸缩变换:, (纵坐标不变,横坐标伸长为原来的 倍;, (横坐标不变,纵坐标伸长为原来的倍; 对称变换:; ; 翻转变换:右不动,右向左翻(在左侧图象去掉);上不动,下向上翻(|在下面无图象);11函数图象(曲线)对称性的

6、证明(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然; (注意上述两点的区别!)注:曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2ax,2by)=0;曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2ax, y)=0;曲线C1:f(x,y)=0,关于y=x+a(或y=x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);f(a+x)=f(bx) (xR)y=f(x)图像关于直线x=对称;

7、特别地:f(a+x)=f(ax) (xR)y=f(x)图像关于直线x=a对称;函数y=f(xa)与y=f(bx)的图像关于直线x=对称;12函数零点的求法:直接法(求的根);图象法;二分法.13导数 导数定义:f(x)在点x0处的导数记作;常见函数的导数公式: ; 。导数的四则运算法则:(理科)复合函数的导数:导数的应用:利用导数求切线:注意:)所给点是切点吗?)所求的是“在”还是“过”该点的切线?利用导数判断函数单调性: 是增函数; 为减函数; 为常数; 利用导数求极值:求导数;求方程的根;列表得极值。利用导数最大值与最小值:求的极值;求区间端点值(如果有);得最值。14(理科)定积分 定积

8、分的定义:定积分的性质: (常数); (其中。微积分基本定理(牛顿莱布尼兹公式):定积分的应用:求曲边梯形的面积:; 求变速直线运动的路程:;求变力做功:。第三部分 三角函数、三角恒等变换与解三角形1角度制与弧度制的互化:弧度,弧度,弧度弧长公式:;扇形面积公式:。2三角函数定义:角中边上任意一点为,设则:3三角函数符号规律:一全正,二正弦,三两切,四余弦;4诱导公式记忆规律:“奇变偶不变,符号看象限”;5对称轴:;对称中心:; 对称轴:;对称中心:; (上述结论不需要记忆,但要知道如何得到上述的结论)6同角三角函数的基本关系:;7. 三角函数的单调区间 的递增区间是,递减区间是;的递增区间是

9、,递减区间是的递增区间是的递减区间是8两角和与差的正弦、余弦、正切公式: 。二9. 倍角公式:;。10正、余弦定理:正弦定理: (是外接圆直径)注:;。余弦定理:等三个;注:等三个。11。几个公式:三角形面积公式:;内切圆半径r=;外接圆直径2R=11已知时三角形解的个数的判定: AbaCh其中h=bsinA,A为锐角时:ah时,无解;a=h时,一解(直角);hab时,一解(锐角)。第四部分 立体几何1三视图与直观图:注:原图形与直观图面积之比为。(斜二测画法如何作图你还知道吗?)2表(侧)面积与体积公式:柱体:表面积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h 锥体:表面积:S=S侧

10、+S底;侧面积:S侧=;体积:V=S底h:台体:表面积:S=S侧+S上底S下底;侧面积:S侧=;体积:V= (S+)h;球体:表面积:S=;体积:V= 。3位置关系的证明(主要方法):直线与直线平行:公理4;线面平行的性质定理;面面平行的性质定理。直线与平面平行:线面平行的判定定理;面面平行线面平行。平面与平面平行:面面平行的判定定理及推论;垂直于同一直线的两平面平行。直线与平面垂直:直线与平面垂直的判定定理;面面垂直的性质定理。平面与平面垂直:定义-两平面所成二面角为直角;面面垂直的判定定理。注:理科还可用向量法。4.求角:(步骤-。找或作角;。求角)异面直线所成角的求法: 平移法:平移直线

11、,构造三角形; 补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系。注:理科还可用向量法,转化为两直线方向向量的夹角。直线与平面所成的角:直接法(利用线面角定义);先求斜线上的点到平面距离h,与斜线段长度作比,得sin。注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。5结论: 长方体从一个顶点出发地三条棱长分别为a,b,c,则对角线长为,全面积为2ab+2bc+2ca;长方体体对角线与过同一顶点的三条棱所成的角分别为则:cos2+cos2+cos2=1;sin2+sin2+sin2=2A 正方体的棱长为a,则对角线长为,全面积为6,体积为 长方体或正方体的外接球直

12、径2R等于长方体或正方体的对角线长;(4) 正四面体的性质:设棱长为,则正四面体的: 高:;对棱间距离:; 内切球半径:;外接球半径:;第五部分 直线与圆1直线方程点斜式: ;斜截式: ;截距式: ;两点式: ;一般式:,(A,B不全为0)。(直线的方向向量:(,法向量(2求解线性规划问题的步骤是:(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。3两条直线的位置关系:直线方程 平行的充要条件 垂直的充要条件 备注 有斜率 且 不可写成 (验证) 分式4直线系:直线方程 平行直线系 垂直直线系 相交直线系 5几个公式设A(x1,y1)、B(x2,y2)、C(x3,y3)

13、,ABC的重心G:();点P(x0,y0)到直线Ax+By+C=0的距离:;两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是;6圆的方程:标准方程: ; 。一般方程: (注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆A=C0且B=0且D2+E24AF0;7圆的方程的求法:待定系数法;几何法;圆系法。(圆的方程有2种,在利用待定系数法求圆的方程时2种方程选取方案如何确定)8圆系: ; 注:当时表示两圆交线。 。9点、直线与圆的位置关系:(主要掌握几何法)点与圆的位置关系:(表示点到圆心的距离)点在圆上;点在圆内;点在圆外。直线与圆的位置关系:(表示圆心到直线的距离)相切;相交;(直线与圆相交所得的弦长)相离。圆与圆的位置关系:(表示圆心距,表示两圆半径,且)相离;外切;相交

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号