《中考数学点对点突破复习特色专题-专题37 二次函数问题(原卷版)》由会员分享,可在线阅读,更多相关《中考数学点对点突破复习特色专题-专题37 二次函数问题(原卷版)(12页珍藏版)》请在金锄头文库上搜索。
1、专题37 二次函数问题1.二次函数的概念:一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。2.二次函数y=ax2 +bx+c(a0)的图像与性质yxO(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a0时,抛物线的开口向上;当a0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;=0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;0时,一元二次方程有不等的实根,二次函数图
2、像与x轴没有交点。6函数平移规律:左加右减、上加下减.【例题1】(2020贵州黔西南)如图,抛物线yax2bx4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x,连接AC,AD,BC若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是( )A. 点B坐标为(5,4)B. ABADC. aD. OCOD16【对点练习】(2020湖北天门模拟)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(1,0),(3,0)对于下列命题:b2a=0;abc0;a2b+4c0;8a+c0其中正确的有( )A3个 B2个
3、C1个 D0个【例题2】(2020无锡)二次函数yax23ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上,若ABM是以AB为直角边的直角三角形,则点M的坐标为 【对点练习】已知抛物线y=ax23x+c(a0)经过点(2,4),则4a+c1= 【例题3】(2020河南)如图,抛物线yx2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OAOB,点G为抛物线的顶点(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y
4、Q的取值范围【对点练习】如图,抛物线y=x2bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由一、选择题1(2020鄂州)如图,抛物线yax2+bx+c(a0)与x轴交于点A(1,0)和B,与y轴交于点C下列结论:abc0,2a+b0,4a2b+c0,3a+c0,其中正确的结论个数为()A1个B2个C3个D4个2(2020株洲)二次函数yax2+bx+c,若ab0,ab20,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1x2,
5、x1+x20,则()Ay1y2By1y2Cy1y2Dy1、y2的大小无法确定3(2020襄阳)二次函数yax2+bx+c的图象如图所示,下列结论:ac0;3a+c0;4acb20;当x1时,y随x的增大而减小其中正确的有()A4个B3个C2个D1个4(2020广东)把函数y(x1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为()Ayx2+2By(x1)2+1Cy(x2)2+2Dy(x1)235(2020菏泽)一次函数yacx+b与二次函数yax2+bx+c在同一平面直角坐标系中的图象可能是()A B C D6(2020天津)已知抛物线yax2+bx+c(a,b,c是常数,a0,c1
6、)经过点(2,0),其对称轴是直线x=12有下列结论:abc0;关于x的方程ax2+bx+ca有两个不等的实数根;a-12其中,正确结论的个数是()A0B1C2D37(2020陕西)在平面直角坐标系中,将抛物线yx2(m1)x+m(m1)沿y轴向下平移3个单位则平移后得到的抛物线的顶点一定在()A第一象限B第二象限C第三象限D第四象限8.(2019哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )A BC D9.(2019年陕西省)已知抛物线,当时,且当时, y的值随x值的增大而减小,则m的取值范围是( )A B C D 10.(2019广西梧州)已知,关于的
7、一元二次方程的解为,则下列结论正确的是ABCD二、填空题11(2020南京)下列关于二次函数y(xm)2+m2+1(m为常数)的结论:该函数的图象与函数yx2的图象形状相同;该函数的图象一定经过点(0,1);当x0时,y随x的增大而减小;该函数的图象的顶点在函数yx2+1的图象上其中所有正确结论的序号是 12(2020连云港)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y0.2x2+1.5x2,则最佳加工时间为 min13(2020泰安)已知二次函数yax2+bx+c(a,b,c是常数,a0)的y与x的部分对应值如下表
8、:x54202y60646下列结论:a0;当x2时,函数最小值为6;若点(8,y1),点(8,y2)在二次函数图象上,则y1y2;方程ax2+bx+c5有两个不相等的实数根其中,正确结论的序号是 (把所有正确结论的序号都填上)14(2020哈尔滨)抛物线y3(x1)2+8的顶点坐标为 15(2020无锡)请写出一个函数表达式,使其图象的对称轴为y轴: 16(2020上海)如果将抛物线yx2向上平移3个单位,那么所得新抛物线的表达式是 17(2020黔东南州)抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0时,x的取值范围是 18(2
9、020灌南县一模)二次函数yx22x+3的图象的顶点坐标为 19.(2019黑龙江哈尔滨)二次函数的最大值是 20.(2019江苏镇江)已知抛物线yax24ax4a1(a0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2a1的最小值是 21.(2019内蒙古赤峰)二次函数yax2+bx+c(a0)的图象如图所示,下列结论:b0;ab+c0;一元二次方程ax2+bx+c+10(a0)有两个不相等的实数根;当x1或x3时,y0上述结论中正确的是 (填上所有正确结论的序号)三、解答题22(2020陕西)如图,抛物线yx2+bx+c经过点(3,12)和(2,3),与两坐标轴的
10、交点分别为A,B,C,它的对称轴为直线l(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点要使以P、D、E为顶点的三角形与AOC全等,求满足条件的点P,点E的坐标23(2020凉山州)如图,二次函数yax2+bx+x的图象过O(0,0)、A(1,0)、B(32,32)三点(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQx轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标24(2020黑龙江)如图,已知二
11、次函数yx2+(a+1)xa与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知BAC的面积是6(1)求a的值;(2)在抛物线上是否存在一点P,使SABPSABC若存在请求出P坐标,若不存在请说明理由25(2020衡阳)在平面直角坐标系xOy中,关于x的二次函数yx2+px+q的图象过点(1,0),(2,0)(1)求这个二次函数的表达式;(2)求当2x1时,y的最大值与最小值的差;(3)一次函数y(2m)x+2m的图象与二次函数yx2+px+q的图象交点的横坐标分别是a和b,且a3b,求m的取值范围26(2020甘孜州)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件
12、)与销售单价x(元)之间的关系可以近似看作一次函数ykx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件(1)求k,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润27(2020安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线yx+m经过点A,抛物线yax2+bx+1恰好经过A,B,C三点中的两点(1)判断点B是否在直线yx+m上,并说明理由;(2)求a,b的值;(3)平移抛物线yax2+bx+1,使其顶点仍在直线yx+m上,求平移后所得抛物线与y轴交点纵坐标的最大值28(2020上海)在平面直角坐标系xOy中,直线y=-12x+5与x轴、y轴分别交于点A、B(如图)抛物线yax2+bx(a0)经过点A(1)求线段AB的长;(2)如果抛物线yax2+bx经过线段AB上的另一点C,且BC=5,求这条抛物线的表达式;(3)如果抛物线yax2+bx的顶点D位于AOB内,求a的取值范围29(2020苏州)如图,二次函数yx2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左