2021年全国中考数学真题分项-专题13 二次函数图象性质与应用(共38题)-(解析版)

上传人:大**** 文档编号:193915888 上传时间:2021-08-24 格式:DOCX 页数:49 大小:1.47MB
返回 下载 相关 举报
2021年全国中考数学真题分项-专题13 二次函数图象性质与应用(共38题)-(解析版)_第1页
第1页 / 共49页
2021年全国中考数学真题分项-专题13 二次函数图象性质与应用(共38题)-(解析版)_第2页
第2页 / 共49页
2021年全国中考数学真题分项-专题13 二次函数图象性质与应用(共38题)-(解析版)_第3页
第3页 / 共49页
2021年全国中考数学真题分项-专题13 二次函数图象性质与应用(共38题)-(解析版)_第4页
第4页 / 共49页
2021年全国中考数学真题分项-专题13 二次函数图象性质与应用(共38题)-(解析版)_第5页
第5页 / 共49页
点击查看更多>>
资源描述

《2021年全国中考数学真题分项-专题13 二次函数图象性质与应用(共38题)-(解析版)》由会员分享,可在线阅读,更多相关《2021年全国中考数学真题分项-专题13 二次函数图象性质与应用(共38题)-(解析版)(49页珍藏版)》请在金锄头文库上搜索。

1、2021年中考数学真题分项汇编【全国通用】(第01期)专题13二次函数图象性质与应用(共38题)姓名:_ 班级:_ 得分:_一、单选题1(2021山东泰安市中考真题)将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )ABCD【答案】B【分析】根据二次函数平移性质“左加右减,上加下减”,得出将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线的解析式,代入求值即可.【详解】解:将抛物线化为顶点式,即:,将抛物线的图象向右平移1个单位,再向下平移2个单位,根据函数图像平移性质:左加右减,上加下减得:,A选项代入,不符合;B选项代入, ,符合;C选项代入, ,不符

2、合;D选项代入,不符合;故选:B【点睛】本题主要考查函数图像平移的性质,一般先将函数化为顶点式:即的形式,然后按照“上加下减,左加右减”的方式写出平移后的解析式,能够根据平移方式写出平移后的解析式是解题关键2(2021浙江绍兴市中考真题)关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值6【答案】D【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【点睛】本题主要考查了二次函数的最值问题,关键是根据二

3、次函数的解析式确定a的符号和根据顶点坐标求出最值3(2021四川凉山彝族自治州中考真题)二次函数的图象如图所示,则下列结论中不正确的是( )AB函数的最大值为C当时,D【答案】D【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项【详解】解:抛物线开口向下,a0,抛物线的对称轴为直线x=-1,即b=2a,则b0,抛物线与y轴交于正半轴,c0,则abc0,故A正确;当x=-1时,y取最大值为,故B正确;由于开口向上,对称轴为直线x=-1,则点(1,0)关于直线x=-1对

4、称的点为(-3,0),即抛物线与x轴交于(1,0),(-3,0),当时,故C正确;由图像可知:当x=-2时,y0,即,故D错误;故选D【点睛】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)4(2021陕西中考真题)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下

5、列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大【答案】C【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【点睛】本题主要考查了待定系数法求二次函数的解析

6、式以及二次函数的性质,利用二次函数的性质解答是解题关键5(2021四川眉山市中考真题)在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )ABCD【答案】A【分析】先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式【详解】解:当x=0时,y=5,C(0,5);设新抛物线上的点的坐标为(x,y),原抛物线与新抛物线关于点C成中心对称,由,;对应的原抛物线上点的坐标为;代入原抛物线解析式可得:,新抛物线的解析式为:;故选:A【点睛】本题综合考查了求抛物线上点的坐标、中心对称在平面

7、直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等6(2021浙江杭州市中考真题)已知和均是以为自变量的函数,当时,函数值分别为和,若存在实数,使得,则称函数和具有性质以下函数和具有性质的是( )A和B和C和D和【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项【详解】解:当时,函数值分别为和,若存在实数,使得,对于A选项则有,由一元二次方程根的判别式可得:,所以存在实数m,故符合题意;对于B选项则有,由一元二次

8、方程根的判别式可得:,所以不存在实数m,故不符合题意;对于C选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;对于D选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;故选A【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键7(2021上海中考真题)将抛物线向下平移两个单位,以下说法错误的是( )A开口方向不变B对称轴不变Cy随x的变化情况不变D与y轴的交点不变【答案】D【分析】根据二次函数的平移特点即可求解【详解】将抛物线向下平移两个单

9、位,开口方向不变、对称轴不变、故y随x的变化情况不变;与y轴的交点改变故选D【点睛】此题主要考查二次函数的函数与图象,解题的关键是熟知二次函数图象平移的特点8(2021江苏苏州市中考真题)已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )A或2BC2D【答案】B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,得到的抛物线正好经过坐标原点+1即解得:或抛物线的对称轴在轴右侧00故选:B【点睛】此题主要考查了函数图象的平移,要求熟

10、练掌握平移的规律:左加右减,上加下减9(2021天津中考真题)已知抛物线(是常数,)经过点,当时,与其对应的函数值有下列结论:;关于x的方程有两个不等的实数根;其中,正确结论的个数是( )A0B1C2D3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】抛物线(是常数,)经过点,当时,与其对应的函数值c=10,a-b+c= -1,4a-2b+c1,a-b= -2,2a-b0,2a-a-20,a20,b=a+20,abc0,,=0,有两个不等的实数根;b=a+2,a2,c=1,a+b+c=a+a+2+1=2a+3,a2,2a4,2a+34+37,

11、故选D【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键10(2021四川遂宁市中考真题)已知二次函数的图象如图所示,有下列5个结论:;();若方程1有四个根,则这四个根的和为2,其中正确的结论有( )A2个B3个C4个D5个【答案】A【分析】根据抛物线的开口向下,对称轴方程以及图象与y轴的交点得到a,b,c的取值,于是可对进行判断;根据抛物线与x轴的交点的个数可对进行判断;根据对称轴可得,则,根据可得,代入变形可对进行判断;当时,的值最大,即当时,即,则可对进行判断;由于方程ax2+bx

12、+c=1有2个根,方程ax2+bx+c=-1有2个根,则利用根与系数的关系可对进行判断【详解】解:抛物线开口方向向下,a0,抛物线与y轴交于正半轴,c0,对称轴在y轴右侧,b0,abc0,错误;抛物线与x轴有两个交点0,故错误;抛物线的对称轴为直线x=1,由图象得,当时,故正确;当时,的值最大,当时,(),b0,(),故正确;方程|ax2+bx+c|=1有四个根,方程ax2+bx+c=1有2个根,方程ax2+bx+c=-1有2个根,所有根之和为2(-)=2=4,所以错误正确的结论是,故选:A【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛

13、物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c)抛物线与x轴交点个数由决定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点11(2021江苏连云港市中考真题)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征甲:函数图像经过点;乙:函数图像经过第四象限;丙:当时,y随x的增大而增大则这个函数表达式可能是( )ABCD【答案】D【分析】根据所给函数的性质逐一判断即可【详解】解:A.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而减小故选项A不符合题意;B.对于,当x=-1时,y=-1,故函数图像不经过点;函数图象分布在一、三象限;当时,y随x的增大而减小故选项B不符合题意;C.对于,当x=-1时,y=1,故函数图像经过点;函数图象分布在一、二象限;当时,y随x的增大而增大故选项C不符合题意;D.对于,当x=-1时,y=1,故函数图像经过点;函数图象

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 中考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号