《第8章 第6节 双曲线》由会员分享,可在线阅读,更多相关《第8章 第6节 双曲线(13页珍藏版)》请在金锄头文库上搜索。
1、双曲线考试要求1.了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3.理解数形结合思想.4.了解双曲线的简单应用1双曲线的定义(1)平面内与两个定点F1,F2(|F1F2|2c0)的距离之差的绝对值为非零常数2a(2a0,c0.当2a|F1F2|时,M点不存在2双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRya或ya,xR对称性对称轴:坐标轴,对称中心:原点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近
2、线yxyx离心率e,e(1,)实、虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a,b,c的关系c2a2b2(ca0,cb0)3等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x2y2(0)(2)等轴双曲线离心率e两条渐近线yx相互垂直1双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|minac,|PF2|minca.(3)同支的焦点弦中最短的为通
3、径(过焦点且垂直于长轴的弦),其长为,异支的弦中最短的为实轴,其长为2a.(4)设P,A,B是双曲线上的三个不同的点,其中A,B关于原点对称,直线PA,PB斜率存在且不为0,则直线PA与PB的斜率之积为.(5)P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,则,其中为F1PF2.2巧设双曲线方程(1)与双曲线1(a0,b0)有共同渐近线的方程可表示为 (t0)(2)过已知两个点的双曲线方程可设为mx2ny21(mn0)一、易错易误辨析(正确的打“”,错误的打“”)(1)平面内到点F1(0,4),F2(0,4)距离之差的绝对值等于8的点的轨迹是双曲线()(2)方程1(
4、mn0)表示焦点在x轴上的双曲线()(3)双曲线(m0,n0,0)的渐近线方程是0,即0.()(4)等轴双曲线的渐近线互相垂直,离心率等于.()答案(1)(2)(3)(4)二、教材习题衍生1以椭圆1的焦点为顶点,顶点为焦点的双曲线方程为 ()Ax21By21Cx21D1A设所求的双曲线方程为1(a0,b0),由椭圆1,得椭圆焦点为(1,0),在x轴上的顶点为(2,0)所以双曲线的顶点为(1,0),焦点为(2,0). 所以a1,c2,所以b2c2a23,所以双曲线标准方程为x21.2经过点A(3,1),且对称轴都在坐标轴上的等轴双曲线方程为_1设等轴双曲线的方程为x2y2(0)由题意得91,8.
5、即1.3若方程1表示双曲线,则m的取值范围是_(,2)(1,)因为方程1表示双曲线,所以(2m)(m1)0,即m1或m2.4双曲线1的实轴长为_,离心率为_,渐近线方程为_10yx双曲线1中a5,b224,c2252449,实轴长为2a10,离心率e,渐近线方程为yx. 考点一双曲线的定义及其应用 双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是不是双曲线,进而根据要求可求出曲线方程(2)在“焦点三角形”中,当F1PF290时,SPF1F2b2,常利用正弦定理、余弦定理,经常结合|PF1|PF2|2a,运用平方的方法,建立|PF1|与|PF2|的关系提醒:在应用双曲线定义时,要注意定义
6、中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支典例1(1)已知双曲线x21上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于_(2)已知圆C1:(x3)2y21和圆C2:(x3)2y29,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为_(3)已知F1,F2为双曲线C:x2y22的左、右焦点,点P在C上,|PF1|2|PF2|,则cosF1PF2_.(1)6(2)x21(x1)(3)(1)设双曲线的焦点为F1,F2,|PF1|4,则|PF1|PF2|2,故|PF2|6或2,又双曲线上的点到焦点的距离的最小值为ca1,故|PF2|6
7、.(2)如图所示,设动圆M与圆C1及圆C2分别外切于点A和B.根据两圆外切的条件,得|MC1|AC1|MA|,|MC2|BC2|MB|.因为|MA|MB|,所以|MC1|AC1|MC2|BC2|,即|MC2|MC1|BC2|AC1|2,所以点M到两定点C1,C2的距离的差是常数且小于|C1C2|.根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与C2的距离大,与C1的距离小),其中a1,c3,则b28.故点M的轨迹方程为x21(x1)(3)因为由双曲线的定义有|PF1|PF2|PF2|2a2,所以|PF1|2|PF2|4,所以cosF1PF2.母题变迁1将本例(3)中的条件“|PF1|2|
8、PF2|”改为“F1PF260”,则F1PF2的面积是多少?解不妨设点P在双曲线的右支上,则|PF1|PF2|2a2,在F1PF2中,由余弦定理,得cosF1PF2,|PF1|PF2|8,SF1PF2|PF1|PF2|sin 602.2将本例(3)中的条件“|PF1|2|PF2|”改为“0”,则F1PF2的面积是多少?解不妨设点P在双曲线的右支上,则|PF1|PF2|2a2,0,在F1PF2中,有|PF1|2|PF2|2|F1F2|2,即|PF1|2|PF2|216,|PF1|PF2|4,SF1PF2|PF1|PF2|2.点评:(1)求双曲线上的点到焦点的距离时,要注意取舍,如本例T(1);(
9、2)利用定义求双曲线方程时,要注意所求是双曲线一支,还是整个双曲线,如本例T(2)1虚轴长为2,离心率e3的双曲线的两焦点为F1,F2,过F1作直线交双曲线的一支于A,B两点,且|AB|8,则ABF2的周长为()A3 B16 C12D24B由于2b2,e3,b1,c3a,9a2a21,a.由双曲线的定义知,|AF2|AF1|2a,|BF2|BF1|,得|AF2|BF2|(|AF1|BF1|),又|AF1|BF1|AB|8,|AF2|BF2|8,则ABF2的周长为16,故选B.2已知F是双曲线1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|PA|的最小值为_9设双曲线的右焦点为F1,
10、则由双曲线的定义,可知|PF|4|PF1|,所以当|PF1|PA|最小时满足|PF|PA|最小由双曲线的图象(图略),可知当点A,P,F1共线时,满足|PF1|PA|最小,|AF1|即|PF1|PA|的最小值又|AF1|5,故所求的最小值为9. 考点二双曲线的标准方程 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a,2b或2c,从而求出a2,b2,写出双曲线方程(2)待定系数法:先确定焦点在x轴还是y轴,设出标准方程,再由条件确定a2,b2的值,即“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为(0),再根据条件求的值1(2020兰州
11、诊断)经过点M(2,2)且与双曲线1有相同渐近线的双曲线方程是()A1B1C1D1D设所求双曲线方程为(0),又双曲线过点M(2,2),所以6.即双曲线方程为1,故选D.2已知F1,F2分别为双曲线1(a0,b0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,PF1F230,且虚轴长为2,则双曲线的标准方程为()A1B1C1Dx21D由题意可知|PF1|,|PF2|,2b2,由双曲线的定义可得2a,即ca.又b,c2a2b2,a1,双曲线的标准方程为x21,故选D.3经过点P(3,2),Q(6,7)的双曲线的标准方程为_1设双曲线方程为mx2ny21(mn0)解得双曲线方程为1.点评:结合
12、题设条件,灵活选择双曲线的设法,可以快速求解双曲线的标准方程 考点三双曲线的几何性质 1.求双曲线渐近线方程的方法求双曲线1(a0,b0)或1(a0,b0)的渐近线方程的方法是令右边的常数等于0,即令0,得yx;或令0,得yx.2求双曲线的离心率或其范围的方法(1)求a,b,c的值,由1直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2c2a2消去b,然后转化成关于e的方程(或不等式)求解求双曲线的渐近线方程典例21(1)(2018全国卷)双曲线1(a0,b0)的离心率为,则其渐近线方程为()AyxByxCyxDyx(2)(2020广州模拟)设F1,F2分别是双曲线C:1(a0,b0)的左、右焦点,P是C上一点,若|PF1|PF2|6a,且PF1F2的最小内角的大小为30,则双曲线C的渐近线方程是()Axy0Bxy0Cx2y0D2xy0(1)A(2)B(1)法一:(直接法)由题意知,e,所以ca,所以ba,即,所以该双曲线的渐近线方程为yxx.法二:(公式法)由e,得,所以该双曲线的渐近线方程为yxx.(2)假设点