《第7章 第4节 直线、平面垂直的判定及其性质》由会员分享,可在线阅读,更多相关《第7章 第4节 直线、平面垂直的判定及其性质(12页珍藏版)》请在金锄头文库上搜索。
1、直线、平面垂直的判定及其性质考试要求1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题1直线与平面垂直(1)定义:如果直线l与平面内的任意一条直线都垂直,则直线l与平面垂直(2)判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直l性质定理垂直于同一个平面的两条直线平行ab2直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和
2、平面所成的角分别为90和0.(3)范围:.3二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角(3)范围:0,4平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直(2)判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直l直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内
3、的任意直线. (2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面(3)垂直于同一条直线的两个平面平行(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面一、易错易误辨析(正确的打“”,错误的打“”)(1)垂直于同一个平面的两平面平行()(2)若,aa.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面()(4)若平面内的一条直线垂直于平面内的无数条直线,则.()答案(1)(2)(3) (4)二、教材习题衍生1下列命题中错误的是()A如果平面平面,且直线l平面,则直线l平面B如
4、果平面平面,那么平面内一定存在直线平行于平面C如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面D如果平面平面,平面平面,l,那么lAA错误,l与可能平行或相交,其余选项均正确2如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体SEFG中必有()ASGEFG所在平面BSDEFG所在平面CGFSEF所在平面DGDSEF所在平面A四面体SEFG如图所示:由SGGE,SGGF.且GEGFG得SGEFG所在的平面故选A.3如图所示,已知PA平面ABC,BCA
5、C,则图中直角三角形的个数为_4PA平面ABC,PAAB,PAAC,PABC,则PAB,PAC为直角三角形由BCAC,且ACPAA,BC平面PAC,从而BCPC.因此ABC,PBC也是直角三角形 考点一直线与平面垂直的判定与性质 判定线面垂直的四种方法典例1(1)(2019北京高考)已知l,m是平面外的两条不同直线给出下列三个论断:lm;m;l.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_.(2)如图所示,已知AB为圆O的直径,点D为线段AB上一点,且ADDB,点C为圆O上一点,且BCAC,PD平面ABC,PDDB.求证:PACD.(1)或(1)已知l,m是平面外的
6、两条不同直线,由lm与m,不能推出l,因为l可以与平行,也可以相交不垂直;由lm与l能推出m;由m与l可以推出lm.故正确的命题是或.(2)证明因为AB为圆O的直径,所以ACCB,在RtACB中,由ACBC,得ABC30.设AD1,由3ADDB,得DB3,BC2,由余弦定理得CD2DB2BC22DBBCcos 303,所以CD2DB2BC2,即CDAB.因为PD平面ABC,CD平面ABC,所以PDCD,由PDABD,得CD平面PAB,又PA平面PAB,所以PACD.点评:通过本例(2)的训练我们发现:判定定理与性质定理的合理转化是证明线面垂直的基本思想;另外,在解题中要重视平面几何知识,特别是
7、正余弦定理及勾股定理的应用如图所示,在直三棱柱ABCA1B1C1中,ABACAA13,BC2,D是BC的中点,F是CC1上一点当CF2时,证明:B1F平面ADF.证明因为ABAC,D是BC的中点,所以ADBC.在直三棱柱ABCA1B1C1中,因为BB1底面ABC,AD底面ABC,所以ADB1B.因为BCB1BB,BC,B1B平面B1BCC1,所以AD平面B1BCC1.因为B1F平面B1BCC1,所以ADB1F.法一:在矩形B1BCC1中,因为C1FCD1,B1C1CF2,所以RtDCFRtFC1B1,所以CFDC1B1F,所以B1FD90,所以B1FFD.因为ADFDD,AD,FD平面ADF,
8、所以B1F平面ADF.法二:在RtB1BD中,BDCD1,BB13,所以B1D.在RtB1C1F中,B1C12,C1F1,所以B1F.在RtDCF中,CF2,CD1,所以DF.显然DF2B1F2B1D2,所以B1FD90.所以B1FFD.因为ADFDD,AD,FD平面ADF,所以B1F平面ADF. 考点二面面垂直的判定与性质 证明面面垂直的两种方法典例2(2020雅安模拟)如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD平面ABCD.(1)求证:平面ACF平面BDF;(2)若CBA60,求三棱锥EBCF的体积解(1)证明:在菱形ABCD中,ACBD,FD平面ABCD,
9、FDAC.又BDFDD,AC平面BDF.而AC平面ACF,平面ACF平面BDF.(2)取BC的中点O,连接EO,OD,BCE为正三角形,EOBC,平面BCE平面ABCD且交线为BC,EO平面ABCD.FD平面ABCD,EOFD,得FD平面BCE.VEBCFVFBCEVDBCEVEBCD.SBCD22sin 120,EO.VEBCFSBCDEO1.点评:抓住面面垂直的性质,实现面面与线面及线线垂直间的转化是求解本题的关键,另外在第(2)问求解体积时等体积法的应用,是破题的另一要点,平时训练要注意灵活应用(2020广州模拟)如图,在三棱锥VABC中,平面VAB平面ABC,VAB为等边三角形,ACB
10、C,且ACBC,O,M分别为AB,VA的中点(1)求证:平面MOC平面VAB;(2)求三棱锥BVAC的高解(1)证明:ACBC,O为AB的中点,OCAB.平面VAB平面ABC,平面VAB平面ABCAB,OC平面ABC,OC平面VAB.OC平面MOC, 平面MOC平面VAB.(2)在等腰直角ACB中,ACBC,AB2,OC1,等边VAB的面积为SVAB22sin 60,又OC平面VAB,OCOM,在AMC中,AM1,AC,MC,SAMC1,SVAC2SMAC,由三棱锥VABC的体积与三棱锥CVAB的体积相等,即SVAChSVABOC, h,即三棱锥BVAC的高为. 考点三平行与垂直的综合问题 1
11、.对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性途径三:将几何问题转化为代数问题2解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变探索性问题中的平行和垂直关系典例31(2019北京高考)如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD为菱形,E为CD的中点(1)求证:BD平面PAC;(2)若ABC60,求证:平面PAB平面PAE;(3)棱PB上是否存在点F,使得CF平面
12、PAE?说明理由解(1)证明:因为PA平面ABCD,所以PABD.因为底面ABCD为菱形,所以BDAC.又PAACA,所以BD平面PAC.(2)证明:因为PA平面ABCD,AE平面ABCD,所以PAAE.因为底面ABCD为菱形,ABC60,且E为CD的中点,所以AECD,所以ABAE.又ABPAA,所以AE平面PAB.因为AE平面PAE,所以平面PAB平面PAE.(3)棱PB上存在点F,使得CF平面PAE.取F为PB的中点,取G为PA的中点,连接CF,FG,EG.则FGAB,且FGAB.因为底面ABCD为菱形,且E为CD的中点,所以CEAB,且CEAB.所以FGCE,且FGCE.所以四边形CE
13、GF为平行四边形所以CFEG.因为CF平面PAE,EG平面PAE,所以CF平面PAE.点评:(1)处理空间中平行或垂直的探索性问题,一般先根据条件猜测点的位置,再给出证明探索点存在问题,点多为中点或n等分点中的某一个,需根据相关的知识确定点的位置(2)利用向量法,设出点的坐标,结论变条件,求出点的坐标,并指明点的位置折叠问题中的平行与垂直关系典例32(2018全国卷)如图,在平行四边形ABCM中,ABAC3,ACM90.以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BPDQDA,求三棱锥QABP的体积解(1)证明:由已知可得,BAC90,即BAAC.又BAAD,ADACA,AD,AC平面ACD,所以AB平面ACD.又AB平面ABC,所以平面