专题09阿氏圆问题解题策略模型建立:已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.模型解读:如图1所示,⊙O 的半径为 r,点 A、B 都在⊙O 外,P 为⊙O 上的动点, 已知 r=k·OB.连接 PA、PB,则当“PA+k·PB”的值最小时,P 点的位置如何确定?1:连接动点至圆心0(将系数不为1的线段两端点分别与圆心相连接),即连接OP、OB;2:计算连接线段OP、OB长度;3:计算两线段长度的比值;4:在OB上截取一点C,使得构建母子型相似:5:连接AC,与圆0交点为P,即AC线段长为PA+K*PB的最小值.本题的关键在于如何确定“k·PB”的大小,(如图 2)段 OB上截取 OC 使 OC=k·r,则可说明△BPO 与△PCO 相似,即 k·PB=PC.∴本题求“PA+k·PB”的最小值转化为求“PA+PC”的最小值,即 A、P、C 三点共线时最小(如图 3),时AC线段长即所求最小值.经典例题【例1】(2021·全国·九年级专题练习)如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:①,②,③,④的最小值.【答案】①;②;③;④.【分析】①在CB上取点D,使,连接CP、DP、AD.根据作图结合题意易证,即可得出,从而推出,说明当A、P、D三点共线时,最小,最小值即为长.最后在中,利用勾股定理求出AD的长即可;②由,即可求出结果;③在CA上取点E,使,连接CP、EP、BE.根据作图结合题意易证,即可得出,从而推出,说明当B、P、E三点共线时,最小,最小值即为长.最后在中,利用勾股定理求出BE的长即可;④由,即可求出结果.【详解】解:①如图,在CB上取点D,使,连接CP、DP、AD.∵,,,∴.又∵,∴,∴,即,∴,∴当A、P、D三点共线时,最小,最小值即为长.∵在中,.∴的最小值为;②∵,∴的最小值为;③如图,在CA上取点E,使,连接CP、EP、BE.∵,,,∴.又∵,∴,∴,即,∴,∴当B、P、E三点共线时,最小,最小值即为长.∵在中,.∴的最小值为;④∵,∴的最小值为.【点睛】本题考查圆的基本性质,相似三角形的判定和性质,勾股定理.正确的作出辅助线,并且理解三点共线时线段最短是解答本题的关键.【例2】(2022·广东惠州·一模)如图1,抛物线与轴交于两点,与轴交于点,其中点的坐标为,抛物线的对称轴是直线.(1)求抛物线的解析式;(2)若点是直线下方的抛物线上一个动点,是否存在点使四边形的面积为16,若存在,求出点的坐标若不存在,请说明理由;(3)如图2,过点作交抛物线的对称轴于点,以点为圆心,2为半径作,点为上的一个动点,求的最小值.【答案】(1)(2)或(3)【分析】(1)根据点的坐标为,抛物线的对称轴是直线.待定系数法求二次函数解析式即可,(2)先求得直线解析式,设,则,过点作轴交直线于点,根据等于16建立方程,解一元二次方程即可求得的值,然后求得的坐标,(3)在上取,过点作,构造,则当三点共线时,取得最小值,最小值为,勾股定理解直角三形即可.(1)解:∵抛物线与轴交于两点,与轴交于点,点的坐标为,抛物线的对称轴是直线,∴,,解得, 抛物线解析式为:,(2)当,即,解得,,,设直线解析式为,,解得,直线解析式为,设,过点作轴交直线于点,则,,四边形的面积为16, ,解得,或,(3)如图,过点作交抛物线的对称轴于点,以点为圆心,2为半径作,是抛物线的对称轴, ,,,,,,在上取,过点作,交轴于点,交抛物线对称轴于点,则 ,,,,,,,, ,当三点共线时,取得最小值,最小值为,.则的最小值为.【点睛】本题考查了二次函数综合,相似三角形的性质与判定,掌握二次函数的性质与相似三角形的性质与判定是解题的关键.【例3】(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【分析】(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.【解答】解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.【例4】如图,在每个小正方形的边长为1的网格中,△OAB的顶点O,A,B均在格点上,点E在OA上,且点E也在格点上.(I)的值为 ;(Ⅱ)是以点O为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°)连接E'A,E'B,当E'A+E'B的值最小时,请用无刻度的直尺画出点E′,并简要说明点E'的位置是如何找到的(不要求证明) 通过取格点K、T,使得OH:OD=2:3,构造相似三角形将E′B转化为E′H .【分析】(1)求出OE,OB即可解决问题.(2)构造相似三角形把E′B转化为E′H,利用两点之间线段最短即可解决问题.【解答】解:(1)由题意OE=2,OB=3,∴=,故答案为:.(2)如图,取格点K,T,连接KT交OB于H,连接AH交于E′,连接BE′,点E′即为所求.故答案为:通过取格点K、T,使得OH:OD=2:3,构造相似三角形将E′B转化为E′H,利用两点之间线段最短即可解决问题.培优训练一.填空题(共13小题)1.(2022•南召县开学)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值为 .【分析】在AB上截取AQ=1,连接AP,PQ,CQ,证明△APQ∽△ABP,可得PQ=PB,则PB+PC=PC+PQ,当C、Q、P三点共线时,PC+PQ的值最小,求出CQ即为所求.【解析】如图,在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴,∵AP=2,AQ=1,∴,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=PB,∴PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QB===.,∴PB+PC的最小值.,故答案为:.2.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则PA+PB的最小值为 .【分析】在AC上截取CQ=1,连接CP,PQ,BQ,证明△ACP∽△PCQ,可得PQ=AP,当B、Q、P三点共线时,PA+PB的值最小,求出BQ即为所求.【解析】在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴=,∵CP=3,CQ=1,∴=,∴△ACP∽△PCQ,∴PQ=AP,∴PA+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,PA+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=,∴PA+PB的最小值,故答案为:.3.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+PB的最小值为 .【分析】如图,在CB上取一点F,使得CF=,连接PF,AF.利用相似三角形的性质证明PF=PB,根据PF+PA≥AF,利用勾股定理求出AF即可解决问题.【解析】如图,在CB上取一点F,使得CF=,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵=,=,∴=,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴==,∴PF=PB,∴PA+PB=PA+PF,∵PA+PF≥AF,AF===,∴PA+PB≥,∴PA+PB的最小值为,故答案为.4.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 .【分析】在y轴上取点H(0,9),连接BH,通过证明△AOP∽△POH,可证HP=3AP,则3PA+PB=PH+PB,当点P在BH上时,3PA+PB有最小值为HB的长,即可求解.【解析】如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵,∠AOP=∠POH,∴△AOP∽△POH,∴,∴HP=3AP,∴3PA+PB=PH+PB,∴当点P在BH上时,3PA+PB有最小值为HB的长,∴BH===,故答案为:.5.(2021•碑林区校级模拟)如图,在△ABC中,BC=6,∠BAC=60°,则2AB+AC的最大值为 4 .【分析】由2AB+AC=2(AB+)得,再将AB+AE转化成一条线段BP,可证出∠P是定角,从而点P在△PBC的外接圆上运动,当BP为直径时,BP最大解决问题.【解析】∵2AB+AC=2(AB+),∴求2AB+AC的最大值就是求2(AB+)的最大值,过C作CE⊥AB于E,延长EA到P,使得AP=AE,∵∠BAC=60°,∴EA=,∴AB+=AB+AP,∵EC=,PE=2AE,由勾股定理得:PC=,∴sinP=,∴∠P为定值,∵BC=6是定值,∴点P在△CBP的外接圆上,∵AB+AP=BP,∴当BP为直径时,AB+AP最大,即BP',∴sinP'=sinP=,解得BP'=2,∴AB+AP=2,∴2AB+AC=2(AB+AP)=4,故答案为:4.6.(2020•。