一、速度控制算法:欧阳学文首先定义速度偏差 50 km/hWe(k)W50km/h,20Wec(i) =e (k) e (k1)W20,阀值 eswith=10km/h设计思想:油门控制采用增量式 PID 控制算法,刹车控制采 用模糊控制算法,最后通过选择规则进行选择控制量输 入选择规则:e (k) <0 ①e (k)>eswith and throttlr_lH0 选择油门控制②否则:先将油门控制量置0,再选择刹车控制0
3. 模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表:表1: E/EC和U语言值隶属度向量表3210123NB10.500000P0NM010.50000P1NS00.510.5000P2ZO000.510.500P3PS0000.510.50P4PM00000.510P5PB000000.51P6设置模糊规则库如下表表 2:模糊规则表UEEC——NBNMNSZOPSPMPBNBPBPBPMPMPSZOZONMPBPMPMPSZOZONSNSPMPMPSPSZONSNSZOPMPSPSZOZONSNMPSPSPSZOZOZONSNMPMPSZOZOZONSNMNBPBZOZOZONS*NMNMNB3.模糊推理由模糊规则表 3 可以知道输入 E 与 EC 和输出 U 的模糊关系,这里我取两个例子做模糊推理如下:if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:其中,— ,即表1中NB对应行向量, 同理可以得到,■ — . , ■ — ■if (E is NVB or NB) and (EC is NVB) then (U is PVB)I 结果略按此法可得到27个关系子矩阵,对所有子矩阵取并集得到模糊关系矩阵如下:由 R 可以得到模拟量输出为:4. 去模糊化由上面得到的模拟量输出为1X7的模糊向量,每一行 的行元素(u (zij))对应相应的离散变量zj,则可通过加 权平均法公式解模糊: 从而得到实际刹车控制量的精确值 u。
油门控制:油门控制采用增量式 PID 控制,即:只需要设置_、、 三个参数即可输出油门控制量二、程序实现及参数调节 clear all%************************模糊算法 %/*********隶属度向量 *****%P0=[1,0.5,0,0,0,0,0];%*********NBP1=[0,1,0.5,0,0,0,0];%*********NMP2=[0,0.5,1,0.5,0,0,0];%*********NSP3=[0,0,0.5,1,0.5,0,0];%*********ZOP4=[0,0,0,0.5,1,0.5,0];%*********PSP5=[0,0,0,0,0.5,1,0];%*********PMP6=[0,0,0,0,0,0.5,1];%*********PB%***********语言值 *****%NB=3;NM=2;NS=1;ZO=0;PS=1;PM=2;PB=3;%/*********模糊规则表*****%Pg=[PB PB PM PM PS ZO ZO;PB PM PM PS ZO ZO NS;PM PM PS PS ZO NS NS;PM PS PS ZO ZO NS NM;PS PS ZO ZO ZO NS NM;PS ZO ZO ZO NS NM NB;ZO ZO ZO NS NM NM NB];%/*********根据规则表计算模糊关系矩阵*****%R1_=dikaer(xbing(P0,P1),7,P0,7);R1_=reshape(R1_,1,49);R1=dikaer(R1_,49,P6,7);R2_=dikaer(xbing(P2,P3),7,P0,7);R2_=reshape(R2_,1,49);R2=dikaer(R2_,49,P5,7);R3_=dikaer(P0,7,P1,7);R3_=reshape(R3_,1,49);R3=dikaer(R2_,49,P6,7);R4_=dikaer(xbing(P1,P2),7,P1,7);R4_=reshape(R4_,1,49);R4=dikaer(R4_,49,P5,7);R5_=dikaer(P3,7,P1,7);R5_=reshape(R5_,1,49);R5=dikaer(R5_,49,P4,7);R6_=dikaer(xbing(P0,P1),7,P2,7);R6_=reshape(R6_,1,49);R6=dikaer(R6_,49,P5,7);R7_=dikaer(xbing(P2,P3),7,P2,7);R7_=reshape(R7_,1,49);R7=dikaer(R7_,49,P4,7);R8_=dikaer(P0,7,P3,7);R8_=reshape(R8_,1,49);R8=dikaer(R8_,49,P5,7);R9_=dikaer(xbing(P1,P2),7,P3,7);R9_=reshape(R9_,1,49);R9=dikaer(R9_,49,P4,7);R10_=dikaer(P3,7,P3,7);R10_=reshape(R10_,1,49);R10=dikaer(R10_,49,P3,7);R11_=dikaer(xbing(P0,P1),7,P4,7);R11_=reshape(R11_,1,49);R11=dikaer(R11_,49,P4,7);P45=xbing(P4,P5);R12_=dikaer(xbing(P2,P3),7,P45,7);R12_=reshape(R12_,1,49);R12=dikaer(R12_,49,P3,7);R13_=dikaer(P0,7,P5,7);R13_=reshape(R13_,1,49);R13=dikaer(R13_,49,P4,7);R14_=dikaer(P1,7,P5,7);R14_=reshape(R14_,1,49);R14=dikaer(R14_,49,P3,7);P01=xbing(P0,P1);R15_=dikaer(xbing(P01,P2),7,P6,7);R15_=reshape(R15_,1,49);R15=dikaer(R15_,49,P3,7);R16_=dikaer(P3,7,P6,7);R16_=reshape(R16_,1,49);R16=dikaer(R16_,49,P2,7);R17_=dikaer(P4,7,P0,7);R17_=reshape(R17_,1,49);R17=dikaer(R17_,49,P4,7);R18_=dikaer(xbing(P5,P6),7,P0,7);R18_=reshape(R18_,1,49);R18=dikaer(R18_,49,P3,7);R19_=dikaer(xbing(P4,P5),7,P1,7);R19_=reshape(R19_,1,49);R19=dikaer(R19_,49,P3,7);R20_=dikaer(P6,7,xbing(P1,P2),7);R20_=reshape(R20_,1,49);R20=dikaer(R20_,49,P2,7);P23=xbing(P2,P3);R21_=dikaer(P4,7,xbing(P23,P4),7);R21_=reshape(R21_,1,49);R21=dikaer(R21_,49,P3,7);R22_=dikaer(P5,7,xbing(P23,P4),7);R22_=reshape(R22_,1,49);R22=dikaer(R22_,49,P2,7);R23_=dikaer(P6,7,xbing(P3,P4),7);R23_=reshape(R23_,1,49);R23=dikaer(R23_,49,P1,7);R24_=dikaer(P4,7,P5,7);R24_=reshape(R24_,1,49);R24=dikaer(R24_,49,P2,7);R25_=dikaer(P5,7,P5,7);R25_=reshape(R25_,1,49);R25=dikaer(R25_,49,P1,7);R26_=dikaer(P6,7,xbing(P6,P5),7);R26_=reshape(R26_,1,49);R26=dikaer(R26_,49,P0,7);R27_=dikaer(xbing(P4,P5),7,P6,7);R27_=reshape(R27_,1,49);R27=dikaer(R27_,49,P1,7);m=[R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,R20,R21,R22,R23,R24,R25,R26,R27];R=bingji(m);%*************初始化参量 e=0;ec=0;y_1=0;y_2=0;u=0;u_1=0;u_2=0;u_3=0;e_1=0;e_2=0; Eswith=10;throttle_1=0;brake_1=0;x=[0 0 0];ts=0.001;sys=tf(1,[1,2,1],'inputdelay',0.5);dsys=c2d(sys,ts,'zoh');[num,den]=tfdata(dsys,'v');for k=1:1:40000%****************控制系统time(k)=k*ts;if(k<25000)vd(k)=40;elsevd(k)=0;endy(k)=den(2)*y_1den(3)*y_2+num(2)*u_1+num(3)*。