文档详情

江西省九江市修水县2024学年数学八年级上学期期末联考试题含解析

印***
实名认证
店铺
DOC
961KB
约19页
文档ID:352680918
江西省九江市修水县2024学年数学八年级上学期期末联考试题含解析_第1页
1/19

2024学年八年级上学期数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回一、选择题(每小题3分,共30分)1.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )A. B. C. D.2.下列命题是真命题的有(  )①若a2=b2,则a=b;②内错角相等,两直线平行.③若a,b是有理数,则|a+b|=|a|+|b|;④如果∠A=∠B,那么∠A与∠B是对顶角.A.1个 B.2个 C.3个 D.4个3.下列四个图形中,线段BE是△ABC的高的是( )A. B. C. D.4.已知,则与的关系是(  )A. B. C. D.5.在矩形(长方形)ABCD中,AB=3,BC=4,若在矩形所在的平面内找一点P,使△PAB,△PBC,△PCD,△PAD都为等腰三角形,则满足此条件的点P共有( )个.A.3 个 B.4 个 C.5 个 D.6 个6.如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为( ) A. B. C. D.7.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A.87 B.87.6 C.87.8 D.888.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9.一个正数的两个平方根分别是2a-1与-a+2,则a的值为(  )A.1 B.-1 C.2 D.-210.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是(  )A.①②③ B.①②④ C.②③④ D.①③④二、填空题(每小题3分,共24分)11.如图,点在内,因为,,垂足分别是、,,所以平分,理由是______.12.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为_________________________.13.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.14.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示为____________15.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=_______°.16.有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A点处行走的路程是________.17.若把多项式x2+5x﹣6分解因式为_____.18.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.三、解答题(共66分)19.(10分)如图,在DABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE交BC于点D,交AB于点E,求AE的长.20.(6分)如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.21.(6分)勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:1234…………(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现,,之间的关系吗?(3)对于偶数,这个关系 (填“成立”或“不成立”)吗?(4)你能用以上结论解决下题吗?22.(8分)先化简代数式,再从四个数中选择一个你喜欢的数代入求值.23.(8分)某校为了改善办公条件,计划从厂家购买、两种型号电脑.已知每台种型号电脑价格比每台种型号电脑价格多1.1万元,且用11万元购买种型号电脑的数量与用8万元购买种型号电脑的数量相同.求、两种型号电脑每台价格各为多少万元?24.(8分)甲、乙两名队员参加设计训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均数(环)中位数(环)众数(环)方差甲乙(1)表格中 , , ;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应选哪名队员?(3)如果乙再射击次,命中环,那么乙的射击成绩的方差 .(填“变大”“变小”或“不变”)25.(10分)某天,一蔬菜经营户用 1200 元钱按批发价从蔬菜批发市场买了西红柿和豆角共 400 kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如表所示:品名西红柿豆角批发价(单位:元/kg)2.43.2零售价(单位:元/kg)3.85.2(1)该经营户所批发的西红柿和豆角的质量分别为多少 kg?(2)如果西红柿和豆角全部以零售价售出,他当天卖出这些西红柿和豆角赚了多少钱?26.(10分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.参考答案一、选择题(每小题3分,共30分)1、C【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.【点睛】此题考查函数的图象,解题关键在于观察图形2、D【解析】试题解析:①若a2=b2,则a=b;是假命题;②内错角相等,两直线平行.是真命题;③若a,b是有理数,则|a+b|=|a|+|b|;是假命题;④如果∠A=∠B,那么∠A与∠B是对顶角.是假命题;故选A.3、D【解析】试题分析:根据三角形的高线的定义可得,则D选项中线段BE是△ABC的高.考点:三角形的高4、C【分析】将a分母有理化,然后求出a+b即可得出结论.【详解】解:∴∴故选C.【点睛】此题考查的是二次根式的化简,掌握分母有理化是解决此题的关键.5、C【分析】根据矩形的对称性画出对称轴,然后根据等腰三角形的定义作图即可.【详解】解:作矩形的两条对称轴l1和l2,交于点P1,根据对称性可知此时P1满足题意;分别以A、B为圆心,以AB的长为半径作弧,交l1于点P2、P3;分别以A、D为圆心,以AD的长为半径作弧,交l2于点P4、P1.根据对称性质可得P1 、P2、P3 、P4、P1均符合题意这样的点P共有1个故选C.【点睛】此题考查的是矩形的性质和作等腰三角形,掌握矩形的性质和等腰三角形的定义是解决此题的关键.6、C【分析】把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.【详解】解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,在Rt△ACB′,所以它爬行的最短路程为13cm.故选:C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.7、B【分析】根据加权平均数的定义,根据比例即可列式子计算,然后得到答案.【详解】解:根据题意,有:小王的最后得分为:;故选:B.【点睛】本题考查了加权平均数的应用,解题的关键是掌握题意,正确利用比例进行计算.8、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y随x的增大而减小,∴一次函数y=kx+b单调递减,∴k<0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.9、B【分析】根据一个正数的两个平方根互为相反数得到关于a的一元一次方程,求解即可.【详解】解:根据题意可得:,解得,故选:B.【点睛】本题考查了平方根的概念,正确理解一个正数的两个平方根的关系,求得a的值是关键.10、A【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF,故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD=m,AE+AF=n,则S△AEF=mn,故④错误.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:A.【点睛】本题考查了三角形的综合问题,掌握角平分线的性质以及定义,三角形内角和定理,平行线的性质,三角形面积的求解方法是解题的关键.二、填空题(每小题3分,共24分)1。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档